Fatou's lemma for weakly converging measures under the uniform integrability condition
Teoriâ veroâtnostej i ee primeneniâ, Tome 64 (2019) no. 4, pp. 771-790 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper describes Fatou's lemma for a sequence of measures converging weakly to a finite measure and for a sequence of functions whose negative parts are uniformly integrable with respect to these measures. The paper also provides new formulations of uniform Fatou's lemma, uniform Lebesgue's convergence theorem, the Dunford–Pettis theorem, and the fundamental theorem for Young measures based on the equivalence of uniform integrability and the apparently weaker property of asymptotic uniform integrability for sequences of functions and finite measures.
Mots-clés : Fatou lemma
Keywords: weak convergence of measures, uniform integrability, asymptotic uniform integrability.
@article{TVP_2019_64_4_a7,
     author = {E. A. Feinberg and P. O. Kas'yanov and Y. Liang},
     title = {Fatou's lemma for weakly converging measures under the uniform integrability condition},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {771--790},
     year = {2019},
     volume = {64},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2019_64_4_a7/}
}
TY  - JOUR
AU  - E. A. Feinberg
AU  - P. O. Kas'yanov
AU  - Y. Liang
TI  - Fatou's lemma for weakly converging measures under the uniform integrability condition
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2019
SP  - 771
EP  - 790
VL  - 64
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_2019_64_4_a7/
LA  - ru
ID  - TVP_2019_64_4_a7
ER  - 
%0 Journal Article
%A E. A. Feinberg
%A P. O. Kas'yanov
%A Y. Liang
%T Fatou's lemma for weakly converging measures under the uniform integrability condition
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2019
%P 771-790
%V 64
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_2019_64_4_a7/
%G ru
%F TVP_2019_64_4_a7
E. A. Feinberg; P. O. Kas'yanov; Y. Liang. Fatou's lemma for weakly converging measures under the uniform integrability condition. Teoriâ veroâtnostej i ee primeneniâ, Tome 64 (2019) no. 4, pp. 771-790. http://geodesic.mathdoc.fr/item/TVP_2019_64_4_a7/

[1] F. Albiac, N. J. Kalton, Topics in Banach space theory, Grad. Texts in Math., 233, 2nd ed., Springer, Cham, 2016, xx+508 pp. | DOI | MR | Zbl

[2] J. M. Ball, “A version of the fundamental theorem for Young measures”, PDEs and continuum models of phase transitions (Nice, 1988), Lecture Notes in Phys., 344, Springer, Berlin, 1989, 207–215 | DOI | MR | Zbl

[3] V. I. Bogachev, Measure theory, v. I, Springer-Verlag, Berlin, 2007, xviii+500 pp. | DOI | MR | Zbl

[4] V. S. Borkar, “Convex analytic methods in Markov decision processes”, Handbook of Markov decision processes, Internat. Ser. Oper. Res. Management Sci., 40, Kluwer Acad. Publ., Boston, MA, 2002, 347–575 | DOI | MR | Zbl

[5] J. P. Chen, B. E. Ugurcan, “Entropic repulsion of Gaussian free field on high-dimensional Sierpinski carpet graphs”, Stochastic Process. Appl., 125:12 (2015), 4632–4673 | DOI | MR | Zbl

[6] Shanyun Chu, Yi Zhang, “Markov decision processes with iterated coherent risk measures”, Internat. J. Control, 87:11 (2014), 2286–2293 | DOI | MR | Zbl

[7] K. Dȩbicki, S. Engelke, E. Hashorva, “Generalized Pickands constants and stationary max-stable processes”, Extremes, 20:3 (2017), 493–517 | DOI | MR | Zbl

[8] J. Diestel, Sequences and series in Banach spaces, Grad. Texts in Math., 92, Springer-Verlag, New York, 1984, xii+263 pp. | DOI | MR | Zbl

[9] F. Dufour, T. Prieto-Rumeau, “Conditions for the solvability of the linear programming formulation for constrained discounted Markov decision processes”, Appl. Math. Optim., 74:1 (2016), 27–51 | DOI | MR | Zbl

[10] R. E. Edwards, Functional analysis. Theory and applications, Holt, Rinehart and Winston, New York–Toronto–London, 1965, xiii+781 pp. | MR | Zbl | Zbl

[11] E. A. Feinberg, “Optimality conditions for inventory control”, Optimization challenges in complex, networked, and risky systems, Tutor. Oper. Res., INFORMS, Cantonsville, MD, 2016, 14–44 | DOI

[12] E. A. Feinberg, J. Huang, “Reduction of total-cost and average-cost MDPs with weakly continuous transition probabilities to discounted MDPs”, Oper. Res. Lett., 46:2 (2018), 179–184 | DOI | MR | Zbl

[13] E. A. Feinberg, A. Jaśkiewicz, A. S. Nowak, “Constrained discounted Markov decision processes with Borel state spaces”, Automatica, 111 (2020), 108582 ; arXiv: 1806.00190 | DOI | MR

[14] E. A. Feinberg, P. O. Kasyanov, N. V. Zadoianchuk, “Average cost Markov decision processes with weakly continuous transition probabilities”, Math. Oper. Res., 37:4 (2012), 591–607 | DOI | MR | Zbl

[15] E. A. Feinberg, P. O. Kasyanov, N. V. Zadoianchuk, “Fatou's lemma for weakly converging probabilities”, Teoriya veroyatn. i ee primen., 58:4 (2013), 812–818 ; Theory Probab. Appl., 58:4 (2014), 683–689 | DOI | Zbl | DOI | MR

[16] E. A. Feinberg, P. O. Kasyanov, M. Z. Zgurovsky, “Uniform Fatou's lemma”, J. Math. Anal. Appl., 444:1 (2016), 550–567 | DOI | MR | Zbl

[17] E. A. Feinberg, P. O. Kasyanov, M. Z. Zgurovsky, “Partially observable total-cost Markov decision processes with weakly continuous transition probabilities”, Math. Oper. Res., 41:2 (2016), 656–681 | DOI | MR | Zbl

[18] E. A. Feinberg, M. E. Lewis, “On the convergence of optimal actions for Markov decision processes and the optimality of $(s,S)$ inventory policies”, Naval Res. Logist., 65:8 (2018), 619–637 | DOI | MR | Zbl

[19] N. García Trillos, D. Sanz-Alonso, “Continuum limits of posteriors in graph Bayesian inverse problems”, SIAM J. Math. Anal., 50:4 (2018), 4020–4040 | DOI | MR | Zbl

[20] F. Gonçalves, “A central limit theorem for operators”, J. Funct. Anal., 271:6 (2016), 1585–1603 | DOI | MR | Zbl

[21] E. Hashorva, “Representations of max-stable processes via exponential tilting”, Stochastic Process. Appl., 128:9 (2018), 2952–2978 | DOI | MR | Zbl

[22] A. Jáskiewicz, A. S. Nowak, “Zero-sum ergodic stochastic games with Feller transition probabilities”, SIAM J. Control Optim., 45:3 (2006), 773–789 | DOI | MR | Zbl

[23] A. Jaśkiewicz, A. S. Nowak, “Stochastic games with unbounded payoffs: applications to robust control in economics”, Dyn. Games. Appl., 1:2 (2011), 253–279 | DOI | MR | Zbl

[24] T. Kamihigashi, “A generalization of Fatou's lemma for extended real-valued functions on $\sigma$-finite measure spaces: with an application to infinite-horizon optimization in discrete time”, J. Inequal. Appl., 2017, 24, 15 pp. | DOI | MR | Zbl

[25] M. V. Kartashov, Imovirnist, protsesi, statistika, Kiïv. un-t, Kiïv, 2008, 494 pp.

[26] D. Landriault, Bin Li, Hongzhong Zhang, “A unified approach for drawdown (drawup) of time-homogeneous Markov processes”, J. Appl. Probab., 54:2 (2017), 603–626 | DOI | MR | Zbl

[27] P. A. Meyer, Probability and potentials, Blaisdell Publ. Co., a div. of Ginn and Co., Waltham, MA–Toronto, ON–London, 1966, xiii+266 pp. | MR | Zbl | Zbl

[28] Xiaoqiang Ren, Junfeng Wu, K. H. Johansson, Guodong Shi, Ling Shi, “Infinite horizon optimal transmission power control for remote state estimation over fading channels”, IEEE Trans. Automat. Control, 63:1 (2018), 85–100 | DOI | MR | Zbl

[29] R. Serfozo, “Convergence of Lebesgue integrals with varying measures”, Sankhyā Ser. A., 44:3 (1982), 380–402 | MR | Zbl

[30] A. N. Shiryaev, Probability, Grad. Texts in Math., 95, 2nd ed., Springer-Verlag, New York, 1996, xvi+623 pp. | DOI | MR | Zbl | Zbl

[31] M. Thorpe, A. M. Johansen, “Pointwise convergence in probability of general smoothing splines”, Ann. Inst. Statist. Math., 70:4 (2018), 717–744 | DOI | MR | Zbl

[32] M. Thorpe, F. Theil, A. M. Johansen, N. Cade, “Convergence of the $k$-means minimization problem using $\Gamma$-convergence”, SIAM J. Appl. Math., 75:6 (2015), 2444–2474 | DOI | MR | Zbl

[33] F. Trèves, Topological vector spaces, distributions and kernels, Academic Press, New York–London, 1967, xvi+624 pp. | MR | Zbl

[34] A. W. van der Vaart, Asymptotic statistics, Camb. Ser. Stat. Probab. Math., 3, Cambridge Univ. Press, Cambridge, 1998, xvi+443 pp. | DOI | MR | Zbl

[35] Ó. Vega-Amaya, “On the vanishing discount factor approach for Markov decision processes with weakly continuous transition probabilities”, J. Math. Anal. Appl., 426:2 (2015), 978–985 | DOI | MR | Zbl

[36] P. Wojtaszczyk, Banach spaces for analysts, Cambridge Stud. Adv. Math., 25, Cambridge Univ. Press, Cambridge, 1991, xiv+382 pp. | DOI | MR | Zbl

[37] Huifu Xu, Yongchao Liu, Hailin Sun, “Distributionally robust optimization with matrix moment constraints: Lagrange duality and cutting plane methods”, Math. Program., 169:2, Ser. A (2018), 489–529 | DOI | MR | Zbl