Keywords: weak convergence of measures, uniform integrability, asymptotic uniform integrability.
@article{TVP_2019_64_4_a7,
author = {E. A. Feinberg and P. O. Kas'yanov and Y. Liang},
title = {Fatou's lemma for weakly converging measures under the uniform integrability condition},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {771--790},
year = {2019},
volume = {64},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2019_64_4_a7/}
}
TY - JOUR AU - E. A. Feinberg AU - P. O. Kas'yanov AU - Y. Liang TI - Fatou's lemma for weakly converging measures under the uniform integrability condition JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2019 SP - 771 EP - 790 VL - 64 IS - 4 UR - http://geodesic.mathdoc.fr/item/TVP_2019_64_4_a7/ LA - ru ID - TVP_2019_64_4_a7 ER -
%0 Journal Article %A E. A. Feinberg %A P. O. Kas'yanov %A Y. Liang %T Fatou's lemma for weakly converging measures under the uniform integrability condition %J Teoriâ veroâtnostej i ee primeneniâ %D 2019 %P 771-790 %V 64 %N 4 %U http://geodesic.mathdoc.fr/item/TVP_2019_64_4_a7/ %G ru %F TVP_2019_64_4_a7
E. A. Feinberg; P. O. Kas'yanov; Y. Liang. Fatou's lemma for weakly converging measures under the uniform integrability condition. Teoriâ veroâtnostej i ee primeneniâ, Tome 64 (2019) no. 4, pp. 771-790. http://geodesic.mathdoc.fr/item/TVP_2019_64_4_a7/
[1] F. Albiac, N. J. Kalton, Topics in Banach space theory, Grad. Texts in Math., 233, 2nd ed., Springer, Cham, 2016, xx+508 pp. | DOI | MR | Zbl
[2] J. M. Ball, “A version of the fundamental theorem for Young measures”, PDEs and continuum models of phase transitions (Nice, 1988), Lecture Notes in Phys., 344, Springer, Berlin, 1989, 207–215 | DOI | MR | Zbl
[3] V. I. Bogachev, Measure theory, v. I, Springer-Verlag, Berlin, 2007, xviii+500 pp. | DOI | MR | Zbl
[4] V. S. Borkar, “Convex analytic methods in Markov decision processes”, Handbook of Markov decision processes, Internat. Ser. Oper. Res. Management Sci., 40, Kluwer Acad. Publ., Boston, MA, 2002, 347–575 | DOI | MR | Zbl
[5] J. P. Chen, B. E. Ugurcan, “Entropic repulsion of Gaussian free field on high-dimensional Sierpinski carpet graphs”, Stochastic Process. Appl., 125:12 (2015), 4632–4673 | DOI | MR | Zbl
[6] Shanyun Chu, Yi Zhang, “Markov decision processes with iterated coherent risk measures”, Internat. J. Control, 87:11 (2014), 2286–2293 | DOI | MR | Zbl
[7] K. Dȩbicki, S. Engelke, E. Hashorva, “Generalized Pickands constants and stationary max-stable processes”, Extremes, 20:3 (2017), 493–517 | DOI | MR | Zbl
[8] J. Diestel, Sequences and series in Banach spaces, Grad. Texts in Math., 92, Springer-Verlag, New York, 1984, xii+263 pp. | DOI | MR | Zbl
[9] F. Dufour, T. Prieto-Rumeau, “Conditions for the solvability of the linear programming formulation for constrained discounted Markov decision processes”, Appl. Math. Optim., 74:1 (2016), 27–51 | DOI | MR | Zbl
[10] R. E. Edwards, Functional analysis. Theory and applications, Holt, Rinehart and Winston, New York–Toronto–London, 1965, xiii+781 pp. | MR | Zbl | Zbl
[11] E. A. Feinberg, “Optimality conditions for inventory control”, Optimization challenges in complex, networked, and risky systems, Tutor. Oper. Res., INFORMS, Cantonsville, MD, 2016, 14–44 | DOI
[12] E. A. Feinberg, J. Huang, “Reduction of total-cost and average-cost MDPs with weakly continuous transition probabilities to discounted MDPs”, Oper. Res. Lett., 46:2 (2018), 179–184 | DOI | MR | Zbl
[13] E. A. Feinberg, A. Jaśkiewicz, A. S. Nowak, “Constrained discounted Markov decision processes with Borel state spaces”, Automatica, 111 (2020), 108582 ; arXiv: 1806.00190 | DOI | MR
[14] E. A. Feinberg, P. O. Kasyanov, N. V. Zadoianchuk, “Average cost Markov decision processes with weakly continuous transition probabilities”, Math. Oper. Res., 37:4 (2012), 591–607 | DOI | MR | Zbl
[15] E. A. Feinberg, P. O. Kasyanov, N. V. Zadoianchuk, “Fatou's lemma for weakly converging probabilities”, Teoriya veroyatn. i ee primen., 58:4 (2013), 812–818 ; Theory Probab. Appl., 58:4 (2014), 683–689 | DOI | Zbl | DOI | MR
[16] E. A. Feinberg, P. O. Kasyanov, M. Z. Zgurovsky, “Uniform Fatou's lemma”, J. Math. Anal. Appl., 444:1 (2016), 550–567 | DOI | MR | Zbl
[17] E. A. Feinberg, P. O. Kasyanov, M. Z. Zgurovsky, “Partially observable total-cost Markov decision processes with weakly continuous transition probabilities”, Math. Oper. Res., 41:2 (2016), 656–681 | DOI | MR | Zbl
[18] E. A. Feinberg, M. E. Lewis, “On the convergence of optimal actions for Markov decision processes and the optimality of $(s,S)$ inventory policies”, Naval Res. Logist., 65:8 (2018), 619–637 | DOI | MR | Zbl
[19] N. García Trillos, D. Sanz-Alonso, “Continuum limits of posteriors in graph Bayesian inverse problems”, SIAM J. Math. Anal., 50:4 (2018), 4020–4040 | DOI | MR | Zbl
[20] F. Gonçalves, “A central limit theorem for operators”, J. Funct. Anal., 271:6 (2016), 1585–1603 | DOI | MR | Zbl
[21] E. Hashorva, “Representations of max-stable processes via exponential tilting”, Stochastic Process. Appl., 128:9 (2018), 2952–2978 | DOI | MR | Zbl
[22] A. Jáskiewicz, A. S. Nowak, “Zero-sum ergodic stochastic games with Feller transition probabilities”, SIAM J. Control Optim., 45:3 (2006), 773–789 | DOI | MR | Zbl
[23] A. Jaśkiewicz, A. S. Nowak, “Stochastic games with unbounded payoffs: applications to robust control in economics”, Dyn. Games. Appl., 1:2 (2011), 253–279 | DOI | MR | Zbl
[24] T. Kamihigashi, “A generalization of Fatou's lemma for extended real-valued functions on $\sigma$-finite measure spaces: with an application to infinite-horizon optimization in discrete time”, J. Inequal. Appl., 2017, 24, 15 pp. | DOI | MR | Zbl
[25] M. V. Kartashov, Imovirnist, protsesi, statistika, Kiïv. un-t, Kiïv, 2008, 494 pp.
[26] D. Landriault, Bin Li, Hongzhong Zhang, “A unified approach for drawdown (drawup) of time-homogeneous Markov processes”, J. Appl. Probab., 54:2 (2017), 603–626 | DOI | MR | Zbl
[27] P. A. Meyer, Probability and potentials, Blaisdell Publ. Co., a div. of Ginn and Co., Waltham, MA–Toronto, ON–London, 1966, xiii+266 pp. | MR | Zbl | Zbl
[28] Xiaoqiang Ren, Junfeng Wu, K. H. Johansson, Guodong Shi, Ling Shi, “Infinite horizon optimal transmission power control for remote state estimation over fading channels”, IEEE Trans. Automat. Control, 63:1 (2018), 85–100 | DOI | MR | Zbl
[29] R. Serfozo, “Convergence of Lebesgue integrals with varying measures”, Sankhyā Ser. A., 44:3 (1982), 380–402 | MR | Zbl
[30] A. N. Shiryaev, Probability, Grad. Texts in Math., 95, 2nd ed., Springer-Verlag, New York, 1996, xvi+623 pp. | DOI | MR | Zbl | Zbl
[31] M. Thorpe, A. M. Johansen, “Pointwise convergence in probability of general smoothing splines”, Ann. Inst. Statist. Math., 70:4 (2018), 717–744 | DOI | MR | Zbl
[32] M. Thorpe, F. Theil, A. M. Johansen, N. Cade, “Convergence of the $k$-means minimization problem using $\Gamma$-convergence”, SIAM J. Appl. Math., 75:6 (2015), 2444–2474 | DOI | MR | Zbl
[33] F. Trèves, Topological vector spaces, distributions and kernels, Academic Press, New York–London, 1967, xvi+624 pp. | MR | Zbl
[34] A. W. van der Vaart, Asymptotic statistics, Camb. Ser. Stat. Probab. Math., 3, Cambridge Univ. Press, Cambridge, 1998, xvi+443 pp. | DOI | MR | Zbl
[35] Ó. Vega-Amaya, “On the vanishing discount factor approach for Markov decision processes with weakly continuous transition probabilities”, J. Math. Anal. Appl., 426:2 (2015), 978–985 | DOI | MR | Zbl
[36] P. Wojtaszczyk, Banach spaces for analysts, Cambridge Stud. Adv. Math., 25, Cambridge Univ. Press, Cambridge, 1991, xiv+382 pp. | DOI | MR | Zbl
[37] Huifu Xu, Yongchao Liu, Hailin Sun, “Distributionally robust optimization with matrix moment constraints: Lagrange duality and cutting plane methods”, Math. Program., 169:2, Ser. A (2018), 489–529 | DOI | MR | Zbl