On integro-local CLT for sums of independent random vectors
Teoriâ veroâtnostej i ee primeneniâ, Tome 64 (2019) no. 4, pp. 707-724
Voir la notice de l'article provenant de la source Math-Net.Ru
The remainder term in the integro-local version of the multidimensional central limit theorem for a sum of
independent random vectors
is studied with due account of asymptotic expansions. It is assumed that the distribution of this sum can be
absolutely continuous and/or lattice in some coordinates.
Keywords:
central limit theorem, independent random vectors, lattice random vectors, volume of a Borel set, asymptotic expansions.
@article{TVP_2019_64_4_a4,
author = {L. V. Rozovskii},
title = {On integro-local {CLT} for sums of independent random vectors},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {707--724},
publisher = {mathdoc},
volume = {64},
number = {4},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2019_64_4_a4/}
}
L. V. Rozovskii. On integro-local CLT for sums of independent random vectors. Teoriâ veroâtnostej i ee primeneniâ, Tome 64 (2019) no. 4, pp. 707-724. http://geodesic.mathdoc.fr/item/TVP_2019_64_4_a4/