On integro-local CLT for sums of independent random vectors
Teoriâ veroâtnostej i ee primeneniâ, Tome 64 (2019) no. 4, pp. 707-724 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The remainder term in the integro-local version of the multidimensional central limit theorem for a sum of independent random vectors is studied with due account of asymptotic expansions. It is assumed that the distribution of this sum can be absolutely continuous and/or lattice in some coordinates.
Keywords: central limit theorem, independent random vectors, lattice random vectors, volume of a Borel set, asymptotic expansions.
@article{TVP_2019_64_4_a4,
     author = {L. V. Rozovskii},
     title = {On integro-local {CLT} for sums of independent random vectors},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {707--724},
     year = {2019},
     volume = {64},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2019_64_4_a4/}
}
TY  - JOUR
AU  - L. V. Rozovskii
TI  - On integro-local CLT for sums of independent random vectors
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2019
SP  - 707
EP  - 724
VL  - 64
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_2019_64_4_a4/
LA  - ru
ID  - TVP_2019_64_4_a4
ER  - 
%0 Journal Article
%A L. V. Rozovskii
%T On integro-local CLT for sums of independent random vectors
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2019
%P 707-724
%V 64
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_2019_64_4_a4/
%G ru
%F TVP_2019_64_4_a4
L. V. Rozovskii. On integro-local CLT for sums of independent random vectors. Teoriâ veroâtnostej i ee primeneniâ, Tome 64 (2019) no. 4, pp. 707-724. http://geodesic.mathdoc.fr/item/TVP_2019_64_4_a4/

[1] A. Bikelis, “Zum zentralen Grenzwertsatz in $R^k$”, Chalmers Inst. of Technol. and the Univ. of Gothenburg, no. 9, Göteborg, 1972, 14–21

[2] R. N. Bhattacharya, R. Ranga Rao, Normal approximation and asymptotic expansions, Wiley Ser. Probab. Math. Statist., John Wiley Sons, New York–London–Sydney, 1976, xiv+274 pp. | MR | MR | Zbl | Zbl

[3] A. P. Bikyalis, “O tsentralnoi predelnoi teoreme v $R^k$. I”, Litovsk. matem. sb., 11:1 (1971), 27–58 ; II, 12:1 (1972), 73–84 ; III, 12:3 (1972), 19–35 | MR | Zbl | MR | Zbl | Zbl

[4] B. von Bahr, “Multi-dimensional integral limit theorems”, Ark. Mat., 7:6 (1967), 71–88 | DOI | MR | Zbl

[5] L. V. Rozovskii, “Otsenki skorosti skhodimosti v “intervalnoi” TsPT dlya summ nezavisimykh sluchainykh vektorov”, Vestn. S.-Peterb. un-ta. Ser. 1. Matem., mekh., astron., 4(62):3 (2017), 466–476 | MR

[6] L. V. Rozovskii, “Ob asimptoticheskikh razlozheniyakh v “intervalnoi” TsPT dlya summ nezavisimykh sluchainykh vektorov”, Veroyatnost i statistika. 26, Zap. nauch. sem. POMI, 466, POMI, SPb., 2017, 273–288 | MR

[7] L. V. Rozovsky, “Integro-local CLT for sums of independent nonlattice random vectors”, Theory Probab. Appl., 64:1 (2019), 27–40 | DOI | DOI | MR | Zbl

[8] A. B. Mukhin, “Local limit theorems for lattice random variables”, Theory Probab. Appl., 36:4 (1992), 698–713 | DOI | MR | Zbl

[9] A. B. Mukhin, “Approximation of local probabilities of sums of independent random variables”, Theory Probab. Appl., 42:4 (1998), 633–645 | DOI | DOI | MR | Zbl

[10] L. V. Rozovsky, “An extremal property of the uniform distribution and some of its consequences”, Theory Probab. Appl., 44:3 (2000), 583–588 | DOI | DOI | MR | Zbl

[11] L. V. Rozovsky, “On the J. Doob inequality for characteristic functions”, Theory Probab. Appl., 44:3 (2000), 588–590 | DOI | DOI | MR | Zbl

[12] I. Dubinskaite, “Lokalnye predelnye teoremy dlya summ neodinakovo raspredelennykh $m$-reshetchatykh sluchainykh vektorov”, Litovsk. matem. sb., 21:4 (1981), 97–116 ; II, 24:3 (1984), 120–132 ; III, 24:4 (1984), 68–80 | MR | Zbl | MR | Zbl | MR | Zbl

[13] Ĭ. Dubinskaĭte, “Limit theorems in $R^k$. I”, Lithuanian Math. J., 22:2 (1982), 129–140 ; II, 24:3 (1984), 256–265 ; III, 24:4 (1984), 325–334 | DOI | DOI | DOI | MR | MR | MR | Zbl | Zbl | Zbl

[14] A. A. Borovkov, A. A. Mogul'skii, “Integro-local theorems for sums of independent random vectors in the series scheme”, Math. Notes, 79:4 (2006), 468–482 | DOI | DOI | MR | Zbl

[15] A. A. Borovkov, “Integro-local and local theorems for normal and large deviations of the sums of nonidentically distributed random variables in the triangular array scheme”, Theory Probab. Appl., 54:4 (2010), 571–587 | DOI | DOI | MR | Zbl

[16] A. A. Borovkov, “Generalization and refinement of the integro-local Stone theorem for sums of random vectors”, Theory Probab. Appl., 61:4 (2017), 590–612 | DOI | DOI | MR | Zbl

[17] C.-G. Esseen, “Fourier analysis of distribution functions. A mathematical study of the Laplace–Gaussian law”, Acta Math., 77 (1945), 1–125 | DOI | MR | Zbl

[18] C. R. Heathcote, J. W. Pitman, “An inequality for characteristic functions”, Bull. Austral. Math. Soc., 6 (1972), 1–9 | DOI | MR | Zbl

[19] V. V. Petrov, Predelnye teoremy dlya summ nezavisimykh sluchainykh velichin, Nauka, M., 1987, 318 pp. | MR | Zbl

[20] W. Feller, An introduction to probability theory and its applications, v. 2, 2nd ed., John Wiley Sons, Inc., New York–London–Sydney, 1971, xxiv+669 pp. | MR | MR | Zbl | Zbl