On integro-local CLT for sums of independent random vectors
Teoriâ veroâtnostej i ee primeneniâ, Tome 64 (2019) no. 4, pp. 707-724

Voir la notice de l'article provenant de la source Math-Net.Ru

The remainder term in the integro-local version of the multidimensional central limit theorem for a sum of independent random vectors is studied with due account of asymptotic expansions. It is assumed that the distribution of this sum can be absolutely continuous and/or lattice in some coordinates.
Keywords: central limit theorem, independent random vectors, lattice random vectors, volume of a Borel set, asymptotic expansions.
@article{TVP_2019_64_4_a4,
     author = {L. V. Rozovskii},
     title = {On integro-local {CLT}  for sums of independent random vectors},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {707--724},
     publisher = {mathdoc},
     volume = {64},
     number = {4},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2019_64_4_a4/}
}
TY  - JOUR
AU  - L. V. Rozovskii
TI  - On integro-local CLT  for sums of independent random vectors
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2019
SP  - 707
EP  - 724
VL  - 64
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2019_64_4_a4/
LA  - ru
ID  - TVP_2019_64_4_a4
ER  - 
%0 Journal Article
%A L. V. Rozovskii
%T On integro-local CLT  for sums of independent random vectors
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2019
%P 707-724
%V 64
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2019_64_4_a4/
%G ru
%F TVP_2019_64_4_a4
L. V. Rozovskii. On integro-local CLT  for sums of independent random vectors. Teoriâ veroâtnostej i ee primeneniâ, Tome 64 (2019) no. 4, pp. 707-724. http://geodesic.mathdoc.fr/item/TVP_2019_64_4_a4/