Supporting prices in a stochastic von Neumann–Gale model of a financial market
Teoriâ veroâtnostej i ee primeneniâ, Tome 64 (2019) no. 4, pp. 692-706 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a problem of utility maximization for multiperiod asset trading in a general model of connected financial markets represented by a graph. The main result of the paper is a theorem providing conditions for the existence of a system of supporting prices in this model. Using the general result, a specific model of an asset market with transaction costs and portfolio constraints is studied.
Mots-clés : von Neumann–Gale model
Keywords: supporting prices, transaction costs, portfolio constraints.
@article{TVP_2019_64_4_a3,
     author = {M. V. Zhitlukhin},
     title = {Supporting prices in a stochastic von {Neumann{\textendash}Gale} model of a financial market},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {692--706},
     year = {2019},
     volume = {64},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2019_64_4_a3/}
}
TY  - JOUR
AU  - M. V. Zhitlukhin
TI  - Supporting prices in a stochastic von Neumann–Gale model of a financial market
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2019
SP  - 692
EP  - 706
VL  - 64
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_2019_64_4_a3/
LA  - ru
ID  - TVP_2019_64_4_a3
ER  - 
%0 Journal Article
%A M. V. Zhitlukhin
%T Supporting prices in a stochastic von Neumann–Gale model of a financial market
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2019
%P 692-706
%V 64
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_2019_64_4_a3/
%G ru
%F TVP_2019_64_4_a3
M. V. Zhitlukhin. Supporting prices in a stochastic von Neumann–Gale model of a financial market. Teoriâ veroâtnostej i ee primeneniâ, Tome 64 (2019) no. 4, pp. 692-706. http://geodesic.mathdoc.fr/item/TVP_2019_64_4_a3/

[1] V. I. Arkin, I. V. Evstigneev, Stochastic models of control and economic dynamics, Academic Press, London, 1987, xxi+208 pp. | MR | Zbl

[2] M. H. A. Davis, A. R. Norman, “Portfolio selection with transaction costs”, Math. Oper. Res., 15:4 (1990), 676–713 | DOI | MR | Zbl

[3] M. A. H. Dempster, I. V. Evstigneev, M. I. Taksar, “Asset pricing and hedging in financial markets with transaction costs: an approach based on the von Neumann–Gale model”, Ann. Finance, 2:4 (2006), 327–355 | DOI | Zbl

[4] E. B. Dynkin, “Stochastic concave dynamic programming”, Math. USSR-Sb., 16:4 (1972), 501–515 | DOI | MR | Zbl

[5] I. V. Evstigneev, M. V. Zhitlukhin, “Controlled random fields, von Neumann–Gale dynamics and multimarket hedging with risk”, Stochastics, 85:4 (2013), 652–666 | DOI | MR | Zbl

[6] J. Komlós, “A generalization of a problem of Steinhaus”, Acta Math. Acad. Sci. Hungar., 18 (1967), 217–229 | DOI | MR | Zbl

[7] D. Gale, “The closed linear model of production”, Linear inequalities and related systems, Ann. of Math. Stud., 38, Princeton Univ. Press, Princeton, NJ, 1956, 285–303 | MR | Zbl

[8] D. Gale, “On optimal development in a multi-sector economy”, Rev. Econ. Stud., 34 (1967), 1–18 | DOI

[9] D. Gale, “A geometric duality theorem with economic applications”, Rev. Econ. Stud., 34 (1967), 19–24 | DOI

[10] D. C. Heath, R. A. Jarrow, “Arbitrage, continuous trading, and margin requirements”, J. Finance, 42:5 (1987), 1129–1142 | DOI | MR

[11] R. C. Merton, “Lifetime portfolio selection under uncertainty: the continuous-time case”, Rev. Econ. Stat., 51:3 (1969), 247–257 | DOI

[12] J. von Neumann, “A model of general economic equilibrium”, Rev. Econ. Stud., 13 (1945), 1–9 | DOI | Zbl

[13] R. Radner, “Optimal stationary consumption with stochastic production and resources”, J. Econom. Theory, 6:1 (1973), 68–90 | DOI | MR