The initial evolution stage of a weakly subcrtical branching process in a random environment
Teoriâ veroâtnostej i ee primeneniâ, Tome 64 (2019) no. 4, pp. 671-691 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A conditional limit theorem is proved describing the distribution of the population size in the initial evolution stage of a weakly subcritical branching process in a random environment given its survival for a long time.
Keywords: weakly subcritical branching process, random environment, random walk, change of measures, limit theorem.
@article{TVP_2019_64_4_a2,
     author = {V. A. Vatutin and E. E. D'yakonova},
     title = {The initial evolution stage of a weakly subcrtical branching process in a random environment},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {671--691},
     year = {2019},
     volume = {64},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2019_64_4_a2/}
}
TY  - JOUR
AU  - V. A. Vatutin
AU  - E. E. D'yakonova
TI  - The initial evolution stage of a weakly subcrtical branching process in a random environment
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2019
SP  - 671
EP  - 691
VL  - 64
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_2019_64_4_a2/
LA  - ru
ID  - TVP_2019_64_4_a2
ER  - 
%0 Journal Article
%A V. A. Vatutin
%A E. E. D'yakonova
%T The initial evolution stage of a weakly subcrtical branching process in a random environment
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2019
%P 671-691
%V 64
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_2019_64_4_a2/
%G ru
%F TVP_2019_64_4_a2
V. A. Vatutin; E. E. D'yakonova. The initial evolution stage of a weakly subcrtical branching process in a random environment. Teoriâ veroâtnostej i ee primeneniâ, Tome 64 (2019) no. 4, pp. 671-691. http://geodesic.mathdoc.fr/item/TVP_2019_64_4_a2/

[1] G. Kersting, V. Vatutin, Discrete time branching processes in random environment, v. 1, Math. Stat. Ser., ISTE, London; John Wiley Sons, Inc., Hoboken, NJ, 2017, xiv+286 pp. | DOI | Zbl

[2] L. Chaumont, “Excursion normalisée, méandre et pont pour les processus de Lévy stables”, Bull. Sci. Math., 121:5 (1997), 377–403 | MR | Zbl

[3] F. Caravenna, L. Chaumont, “Invariance principles for random walks conditioned to stay positive”, Ann. Ins. H. Poincaré Probab. Statist., 44:1 (2008), 170–190 | DOI | MR | Zbl

[4] V. I. Afanasyev, “Limit theorems for a moderately subcritical branching process in a random environment”, Discrete Math. Appl., 8:1 (1998), 35–52 | DOI | DOI | MR | Zbl

[5] V. Vatutin, E. Dyakonova, “Path to survival for the critical branching processes in a random environment”, J. Appl. Probab., 54:2 (2017), 588–602 | DOI | MR | Zbl

[6] V. I. Afanasyev, Ch. Böinghoff, G. Kersting, V. A. Vatutin, “Limit theorems for weakly subcritical branching processes in random environment”, J. Theoret. Probab., 25:3 (2012), 703–732 | DOI | MR | Zbl

[7] V. I. Afanasyev, J. Geiger, G. Kersting, V. A. Vatutin, “Criticality for branching processes in random environment”, Ann. Probab., 33:2 (2005), 645–673 | DOI | MR | Zbl

[8] V. A. Vatutin, V. Wachtel, “Local probabilities for random walks conditioned to stay positive”, Probab. Theory Related Fields, 143:1-2 (2009), 177–217 | DOI | MR | Zbl

[9] R. A. Doney, “Local behaviour of first passage probabilities”, Probab. Theory Related Fields, 152:3-4 (2012), 559–588 | DOI | MR | Zbl