@article{TVP_2019_64_4_a10,
author = {P. Grandits},
title = {A~ruin problem for a~two-dimensional {Brownian} motion with controllable drift in the positive quadrant},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {811--823},
year = {2019},
volume = {64},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2019_64_4_a10/}
}
TY - JOUR AU - P. Grandits TI - A ruin problem for a two-dimensional Brownian motion with controllable drift in the positive quadrant JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2019 SP - 811 EP - 823 VL - 64 IS - 4 UR - http://geodesic.mathdoc.fr/item/TVP_2019_64_4_a10/ LA - ru ID - TVP_2019_64_4_a10 ER -
P. Grandits. A ruin problem for a two-dimensional Brownian motion with controllable drift in the positive quadrant. Teoriâ veroâtnostej i ee primeneniâ, Tome 64 (2019) no. 4, pp. 811-823. http://geodesic.mathdoc.fr/item/TVP_2019_64_4_a10/
[1] D. Aldous, Aldous notes: February 2002, Private notes, 2002, 6 pp. http://www.stat.berkeley.edu/~aldous/Research/OP/river.pdf
[2] G. Alessandrini, “Critical points of solutions of elliptic equations in two variables”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 14:2 (1987), 229–256 | MR | Zbl
[3] A. D. Banner, R. Fernholz, I. Karatzas, “Atlas models of equity markets”, Ann. Appl. Probab., 15:4 (2005), 2296–2330 | DOI | MR | Zbl
[4] A. N. Borodin, P. Salminen, Handbook of Brownian motion — facts and formulae, Probab. Appl., 2nd ed., Birkhäuser Verlag, 2002, xvi+672 pp. | DOI | MR | Zbl
[5] D. Gilbarg, N. S. Trudinger, Elliptic partial differential equations of second order, Classics Math., Reprint of the 1998 ed., Springer-Verlag, Berlin, 2001, xiv+517 pp. | DOI | MR | MR | Zbl | Zbl
[6] M. R. Hestenes, “Extension of the range of a differentiable function”, Duke Math. J., 8 (1941), 183–192 | DOI | MR | Zbl
[7] H. P. McKean, L. A. Shepp, “The advantage of capitalism vs. socialism depends on the criterion”, Veroyatnost i statistika. 9, Zap. nauch. sem. POMI, 328, POMI, SPb., 2005, 160–168 ; J. Math. Sci. (N.Y.), 139:3 (2006), 6589–6594 | MR | Zbl | DOI
[8] N. V. Krylov, Controlled diffusion processes, Appl. Math., 14, Springer-Verlag, New York, 1980, xii+308 pp. | MR | MR | Zbl | Zbl
[9] S. Pal, J. Pitman, “One-dimensional Brownian particle systems with rank-dependent drifts”, Ann. Appl. Probab., 18:6 (2008), 2179–2207 | DOI | MR | Zbl
[10] A. Petrosyan, H. Shahgholian, N. Uraltseva, Regularity of free boundaries in obstacle-type problems, Grad. Stud. Math., 136, Amer. Math. Soc., Providence, RI, 2012, x+221 pp. | DOI | MR | Zbl
[11] Huyên Pham, Continuous-time stochastic control and optimization with financial applications, Stoch. Model. Appl. Probab., 61, Springer-Verlag, Berlin, 2009, xviii+232 pp. | DOI | MR | Zbl
[12] P. Pucci, J. Serrin, The maximum principle, Progr. Nonlinear Differential Equations Appl., 73, Birkhäuser Verlag, Basel, 2007, x+235 pp. | DOI | MR | Zbl
[13] Wenpin Tang, Li-Cheng Tsai, “Optimal surviving strategy for drifted Brownian motions with absorption”, Ann. Probab., 46:3 (2018), 1597–1650 | DOI | MR | Zbl
[14] A. Yu. Veretennikov, “On the criteria for existence of a strong solution of a stochastic equation”, Theory Probab. Appl., 27:3 (1982), 441–449 | DOI | MR | Zbl