A ruin problem for a two-dimensional Brownian motion with controllable drift in the positive quadrant
Teoriâ veroâtnostej i ee primeneniâ, Tome 64 (2019) no. 4, pp. 811-823 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper a two-dimensional Brownian motion (modeling the endowment of two companies), absorbed at the boundary of the positive quadrant, with controlled drift, is considered. We allow that both drifts add up to the maximal value of one. Our target is to choose the strategy in a way s.t. the expected value of the number of surviving companies is maximized. The optimal strategy for this problem is investigated, and it is shown rigorously that the strategy of always pushing maximally the company with less endowment—a strategy which is optimal in the case when one wants to maximize the probability that both companies survive—is in fact not optimal.
Keywords: ruin probabilities, optimal control problem, atlas model, free boundary problems.
@article{TVP_2019_64_4_a10,
     author = {P. Grandits},
     title = {A~ruin problem for a~two-dimensional {Brownian} motion with controllable drift in the positive quadrant},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {811--823},
     year = {2019},
     volume = {64},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2019_64_4_a10/}
}
TY  - JOUR
AU  - P. Grandits
TI  - A ruin problem for a two-dimensional Brownian motion with controllable drift in the positive quadrant
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2019
SP  - 811
EP  - 823
VL  - 64
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_2019_64_4_a10/
LA  - ru
ID  - TVP_2019_64_4_a10
ER  - 
%0 Journal Article
%A P. Grandits
%T A ruin problem for a two-dimensional Brownian motion with controllable drift in the positive quadrant
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2019
%P 811-823
%V 64
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_2019_64_4_a10/
%G ru
%F TVP_2019_64_4_a10
P. Grandits. A ruin problem for a two-dimensional Brownian motion with controllable drift in the positive quadrant. Teoriâ veroâtnostej i ee primeneniâ, Tome 64 (2019) no. 4, pp. 811-823. http://geodesic.mathdoc.fr/item/TVP_2019_64_4_a10/

[1] D. Aldous, Aldous notes: February 2002, Private notes, 2002, 6 pp. http://www.stat.berkeley.edu/~aldous/Research/OP/river.pdf

[2] G. Alessandrini, “Critical points of solutions of elliptic equations in two variables”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 14:2 (1987), 229–256 | MR | Zbl

[3] A. D. Banner, R. Fernholz, I. Karatzas, “Atlas models of equity markets”, Ann. Appl. Probab., 15:4 (2005), 2296–2330 | DOI | MR | Zbl

[4] A. N. Borodin, P. Salminen, Handbook of Brownian motion — facts and formulae, Probab. Appl., 2nd ed., Birkhäuser Verlag, 2002, xvi+672 pp. | DOI | MR | Zbl

[5] D. Gilbarg, N. S. Trudinger, Elliptic partial differential equations of second order, Classics Math., Reprint of the 1998 ed., Springer-Verlag, Berlin, 2001, xiv+517 pp. | DOI | MR | MR | Zbl | Zbl

[6] M. R. Hestenes, “Extension of the range of a differentiable function”, Duke Math. J., 8 (1941), 183–192 | DOI | MR | Zbl

[7] H. P. McKean, L. A. Shepp, “The advantage of capitalism vs. socialism depends on the criterion”, Veroyatnost i statistika. 9, Zap. nauch. sem. POMI, 328, POMI, SPb., 2005, 160–168 ; J. Math. Sci. (N.Y.), 139:3 (2006), 6589–6594 | MR | Zbl | DOI

[8] N. V. Krylov, Controlled diffusion processes, Appl. Math., 14, Springer-Verlag, New York, 1980, xii+308 pp. | MR | MR | Zbl | Zbl

[9] S. Pal, J. Pitman, “One-dimensional Brownian particle systems with rank-dependent drifts”, Ann. Appl. Probab., 18:6 (2008), 2179–2207 | DOI | MR | Zbl

[10] A. Petrosyan, H. Shahgholian, N. Uraltseva, Regularity of free boundaries in obstacle-type problems, Grad. Stud. Math., 136, Amer. Math. Soc., Providence, RI, 2012, x+221 pp. | DOI | MR | Zbl

[11] Huyên Pham, Continuous-time stochastic control and optimization with financial applications, Stoch. Model. Appl. Probab., 61, Springer-Verlag, Berlin, 2009, xviii+232 pp. | DOI | MR | Zbl

[12] P. Pucci, J. Serrin, The maximum principle, Progr. Nonlinear Differential Equations Appl., 73, Birkhäuser Verlag, Basel, 2007, x+235 pp. | DOI | MR | Zbl

[13] Wenpin Tang, Li-Cheng Tsai, “Optimal surviving strategy for drifted Brownian motions with absorption”, Ann. Probab., 46:3 (2018), 1597–1650 | DOI | MR | Zbl

[14] A. Yu. Veretennikov, “On the criteria for existence of a strong solution of a stochastic equation”, Theory Probab. Appl., 27:3 (1982), 441–449 | DOI | MR | Zbl