Fluctuations of the propagation front of a~catalytic branching walk
Teoriâ veroâtnostej i ee primeneniâ, Tome 64 (2019) no. 4, pp. 642-670
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider a supercritical catalytic branching random walk (CBRW) with
finite number of catalysts on a multidimensional lattice $\mathbb{Z}^d$,
$d\in\mathbf{N}$. The behavior of a cloud of particles in space and time is
studied. When estimating the rate of the population propagation for the front
of a multidimensional CBRW, Bulinskaya [Stochastic Process. Appl., 128 (2018), pp. 2325–2340] extended the strong limit
theorem by Carmona and Hu [Ann. Inst. Henri Poincaré Probab. Stat., 50 (2014), pp. 327–351]. Our aim is to analyze the fluctuations of the
propagation front of a CBRW on $\mathbb{Z}^d$.
Keywords:
catalytic branching random walk, supercritical regime, spread of population
Mots-clés : propagation front, fluctuations of front.
Mots-clés : propagation front, fluctuations of front.
@article{TVP_2019_64_4_a1,
author = {E. Vl. Bulinskaya},
title = {Fluctuations of the propagation front of a~catalytic branching walk},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {642--670},
publisher = {mathdoc},
volume = {64},
number = {4},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2019_64_4_a1/}
}
E. Vl. Bulinskaya. Fluctuations of the propagation front of a~catalytic branching walk. Teoriâ veroâtnostej i ee primeneniâ, Tome 64 (2019) no. 4, pp. 642-670. http://geodesic.mathdoc.fr/item/TVP_2019_64_4_a1/