Properties of the deviation rate function and the asymptotics for the Laplace thansform of the distribution of a compound renewal process
Teoriâ veroâtnostej i ee primeneniâ, Tome 64 (2019) no. 4, pp. 625-641 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We find the asymptotics for the logarithm of the Laplace transform of the distribution of a compound renewal process as time increases unboundedly. It is assumed that the elements of the governing sequences of the renewal process satisfy Cramér's moment condition. Representations for the deviation rate function of the compound renewal process are found.
Keywords: compound renewal process, large deviations, large deviation principle, deviation rate function, Laplace transform asymptotics.
Mots-clés : Cramér's condition, Legendre transform
@article{TVP_2019_64_4_a0,
     author = {A. A. Borovkov and A. A. Mogul'skii and E. I. Prokopenko},
     title = {Properties of the deviation rate function and the asymptotics for the {Laplace} thansform of the distribution of a compound renewal process},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {625--641},
     year = {2019},
     volume = {64},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2019_64_4_a0/}
}
TY  - JOUR
AU  - A. A. Borovkov
AU  - A. A. Mogul'skii
AU  - E. I. Prokopenko
TI  - Properties of the deviation rate function and the asymptotics for the Laplace thansform of the distribution of a compound renewal process
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2019
SP  - 625
EP  - 641
VL  - 64
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_2019_64_4_a0/
LA  - ru
ID  - TVP_2019_64_4_a0
ER  - 
%0 Journal Article
%A A. A. Borovkov
%A A. A. Mogul'skii
%A E. I. Prokopenko
%T Properties of the deviation rate function and the asymptotics for the Laplace thansform of the distribution of a compound renewal process
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2019
%P 625-641
%V 64
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_2019_64_4_a0/
%G ru
%F TVP_2019_64_4_a0
A. A. Borovkov; A. A. Mogul'skii; E. I. Prokopenko. Properties of the deviation rate function and the asymptotics for the Laplace thansform of the distribution of a compound renewal process. Teoriâ veroâtnostej i ee primeneniâ, Tome 64 (2019) no. 4, pp. 625-641. http://geodesic.mathdoc.fr/item/TVP_2019_64_4_a0/

[1] A. A. Borovkov, A. A. Mogulskii, “Integro-local limit theorems for compound renewal processes under Cramér's condition. I”, Siberian Math. J., 59:3 (2018), 383–402 | DOI | DOI | MR | Zbl

[2] A. A. Borovkov, A. A. Mogulskii, “Integro-local limit theorems for compound renewal processes under Cramér's condition. II”, Siberian Math. J., 59:4 (2018), 578–597 | DOI | DOI | MR | Zbl

[3] A. A. Borovkov, Asimptoticheskii analiz sluchainykh bluzhdanii. Bystro ubyvayuschie raspredeleniya priraschenii, Fizmatlit, M., 2013, 447 pp. | Zbl

[4] A. A. Borovkov, A. A. Mogul'skiǐ, “Large deviation principles for the finite-dimensional distributions of compound renewal processes”, Siberian Math. J., 56:1 (2015), 28–53 | DOI | MR | Zbl

[5] A. A. Borovkov, “Large deviation principles in boundary problems for compound renewal processes”, Siberian Math. J., 57:3 (2016), 442–469 | DOI | DOI | MR | Zbl

[6] P. Ney, E. Nummelin, “Markov additive processes. I. Eigenvalue properties and limit theorems”, Ann. Probab., 15:2 (1987), 561–592 | DOI | MR | Zbl

[7] P. Ney, E. Nummelin, “Markov additive processes. II. Large deviations”, Ann. Probab., 15:2 (1987), 593–609 | DOI | MR | Zbl

[8] A. A. Mogul'skiǐ, “On a property of the Legendre transform”, Siberian Adv. Math., 28:1 (2018), 65–73 | DOI | DOI | MR | Zbl

[9] S. R. S. Varadhan, “Asymptotic probabilities and differential equations”, Comm. Pure Appl. Math., 19:3 (1966), 261–286 | DOI | MR | Zbl

[10] A. Dembo, O. Zeitouni, Large deviations techniques and applications, Stoch. Model. Appl. Probab., 38, corr. reprint of the 2nd ed., Springer-Verlag, Berlin, 2010, xvi+396 pp. | DOI | MR | Zbl