Mots-clés : Cramér's condition, Legendre transform
@article{TVP_2019_64_4_a0,
author = {A. A. Borovkov and A. A. Mogul'skii and E. I. Prokopenko},
title = {Properties of the deviation rate function and the asymptotics for the {Laplace} thansform of the distribution of a compound renewal process},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {625--641},
year = {2019},
volume = {64},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2019_64_4_a0/}
}
TY - JOUR AU - A. A. Borovkov AU - A. A. Mogul'skii AU - E. I. Prokopenko TI - Properties of the deviation rate function and the asymptotics for the Laplace thansform of the distribution of a compound renewal process JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2019 SP - 625 EP - 641 VL - 64 IS - 4 UR - http://geodesic.mathdoc.fr/item/TVP_2019_64_4_a0/ LA - ru ID - TVP_2019_64_4_a0 ER -
%0 Journal Article %A A. A. Borovkov %A A. A. Mogul'skii %A E. I. Prokopenko %T Properties of the deviation rate function and the asymptotics for the Laplace thansform of the distribution of a compound renewal process %J Teoriâ veroâtnostej i ee primeneniâ %D 2019 %P 625-641 %V 64 %N 4 %U http://geodesic.mathdoc.fr/item/TVP_2019_64_4_a0/ %G ru %F TVP_2019_64_4_a0
A. A. Borovkov; A. A. Mogul'skii; E. I. Prokopenko. Properties of the deviation rate function and the asymptotics for the Laplace thansform of the distribution of a compound renewal process. Teoriâ veroâtnostej i ee primeneniâ, Tome 64 (2019) no. 4, pp. 625-641. http://geodesic.mathdoc.fr/item/TVP_2019_64_4_a0/
[1] A. A. Borovkov, A. A. Mogulskii, “Integro-local limit theorems for compound renewal processes under Cramér's condition. I”, Siberian Math. J., 59:3 (2018), 383–402 | DOI | DOI | MR | Zbl
[2] A. A. Borovkov, A. A. Mogulskii, “Integro-local limit theorems for compound renewal processes under Cramér's condition. II”, Siberian Math. J., 59:4 (2018), 578–597 | DOI | DOI | MR | Zbl
[3] A. A. Borovkov, Asimptoticheskii analiz sluchainykh bluzhdanii. Bystro ubyvayuschie raspredeleniya priraschenii, Fizmatlit, M., 2013, 447 pp. | Zbl
[4] A. A. Borovkov, A. A. Mogul'skiǐ, “Large deviation principles for the finite-dimensional distributions of compound renewal processes”, Siberian Math. J., 56:1 (2015), 28–53 | DOI | MR | Zbl
[5] A. A. Borovkov, “Large deviation principles in boundary problems for compound renewal processes”, Siberian Math. J., 57:3 (2016), 442–469 | DOI | DOI | MR | Zbl
[6] P. Ney, E. Nummelin, “Markov additive processes. I. Eigenvalue properties and limit theorems”, Ann. Probab., 15:2 (1987), 561–592 | DOI | MR | Zbl
[7] P. Ney, E. Nummelin, “Markov additive processes. II. Large deviations”, Ann. Probab., 15:2 (1987), 593–609 | DOI | MR | Zbl
[8] A. A. Mogul'skiǐ, “On a property of the Legendre transform”, Siberian Adv. Math., 28:1 (2018), 65–73 | DOI | DOI | MR | Zbl
[9] S. R. S. Varadhan, “Asymptotic probabilities and differential equations”, Comm. Pure Appl. Math., 19:3 (1966), 261–286 | DOI | MR | Zbl
[10] A. Dembo, O. Zeitouni, Large deviations techniques and applications, Stoch. Model. Appl. Probab., 38, corr. reprint of the 2nd ed., Springer-Verlag, Berlin, 2010, xvi+396 pp. | DOI | MR | Zbl