Mots-clés : maximum, copula, diagonal section
@article{TVP_2019_64_3_a9,
author = {A. V. Lebedev},
title = {Upper bound for the expected minimum of dependent random variables with known {Kendall's} tau},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {578--589},
year = {2019},
volume = {64},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2019_64_3_a9/}
}
A. V. Lebedev. Upper bound for the expected minimum of dependent random variables with known Kendall's tau. Teoriâ veroâtnostej i ee primeneniâ, Tome 64 (2019) no. 3, pp. 578-589. http://geodesic.mathdoc.fr/item/TVP_2019_64_3_a9/
[1] R. B. Nelsen, An introduction to copulas, Springer Ser. Statist., 2nd ed., Springer, New York, 2006, xiv+269 pp. | MR | Zbl
[2] Yaping Wang, Hoang Pham, “Modeling the dependent competing risks with multiple degradation processes and random shock using time-varying copulas”, IEEE Trans. Reliab., 61:1 (2012), 13–22 | DOI
[3] Jianchun Zhang, Xiaobing Ma, Yu Zhao, “A stress-strength time-varying correlation interference model for structural reliability analysis using copulas”, IEEE Trans. Reliab., 66:2 (2017), 351–365 | DOI
[4] R. Nelson, A. N. Tantawi, “Approximate analysis of fork/join synchronization in parallel queues”, IEEE Trans. Comput., 37:6 (1988), 739–743 | DOI
[5] A. Thomasian, “Analysis of fork/join and related queueing systems”, ACM Comput. Surveys, 47:2 (2014), 17, 71 pp. | DOI
[6] A. V. Gorbunova, I. S. Zaryadov, S. I. Matyushenko, K. E. Samuilov, S. Ya. Shorgin, “Approksimatsiya vremeni otklika sistemy oblachnykh vychislenii”, Inform. i ee primen., 9:3 (2015), 32–38 | DOI
[7] Guodong Pang, W. Whitt, “Infinite-server queues with batch arrivals and dependent service times”, Probab. Engrg. Inform. Sci., 26:2 (2012), 197–220 | DOI | MR | Zbl
[8] A. V. Lebedev, “Maximum remaining service time in infinite-server queues”, Problems Inform. Transmission, 54:2 (2018), 176–190 | DOI
[9] A. N. Shiryaev, “Part 1. Facts. Models”, Essentials of stochastic finance, Adv. Ser. Stat. Sci. Appl. Probab., 3, World Sci. Publ., River Edge, NJ, 1999, 2–379 | DOI | MR | Zbl
[10] R. M. Stulz, “Options on the minimum or the maximum of two risky assets: analysis and applications”, J. Financ. Econ., 10:2 (1982), 161–185 | DOI
[11] P. Ouwehand, W. Graeme, “Pricing rainbow options”, Willmott magazine, 2006, May, 74–80 http://finmod.co.za/Pricing
[12] S. V. Podobedova, Raschet spravedlivykh tsen evropeiskikh raduzhnykh optsionov, Materialy Mezhdunarodnogo molodezhnogo nauchnogo foruma “Lomonosov-2017”, MAKS Press, M., 2017, 2 pp. http://lomonosov-msu.ru/archive/Lomonosov_2017/data/10840/uid144109_report.pdf
[13] A. J. McNeil, R. Frey, P. Embrechts, Quantitative risk management. Concepts, techniques and tools, Princet. Ser. Finance, Princeton Univ. Press, Princeton, NJ, 2005, xvi+538 pp. | MR | Zbl
[14] Yu. N. Blagoveschenskii, “Osnovnye elementy teorii kopul”, Prikl. ekonometrika, 26:2 (2012), 113–130 http://pe.cemi.rssi.ru/pe_2012_2_113-130.pdf
[15] R. B. Nelsen, J. J. Quesada Molina, J. A. Rodríguez-Lallena, M. Úbeda-Flores, “Bounds on bivariate distribution functions with given margins and measures of association”, Comm. Statist. Theory Methods, 30:6 (2001), 1055–1062 | DOI | MR | Zbl
[16] R. B. Nelsen, J. J. Quesada Molina, J. A. Rodríguez-Lallena, M. Úbeda Flores, “Best-possible bounds on sets of bivariate distribution functions”, J. Multivariate Anal., 90:2 (2004), 348–358 | DOI | MR | Zbl