Upper bound for the expected minimum of dependent random variables with known Kendall's tau
Teoriâ veroâtnostej i ee primeneniâ, Tome 64 (2019) no. 3, pp. 578-589
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper is concerned with the expectation of the minimum of two dependent identically distributed nonnegative
random variables with known Kendall correlation coefficient.
Under certain conditions, the upper bound for this characteristic is obtained.
The result derived is illustrated by examples.
The problem under consideration can have applications in reliability theory, queueing theory, and financial mathematics.
Keywords:
upper bound, minimum, Kendall correlation coefficient.
Mots-clés : maximum, copula, diagonal section
Mots-clés : maximum, copula, diagonal section
@article{TVP_2019_64_3_a9,
author = {A. V. Lebedev},
title = {Upper bound for the expected minimum of dependent random variables with known {Kendall's} tau},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {578--589},
publisher = {mathdoc},
volume = {64},
number = {3},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2019_64_3_a9/}
}
TY - JOUR AU - A. V. Lebedev TI - Upper bound for the expected minimum of dependent random variables with known Kendall's tau JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2019 SP - 578 EP - 589 VL - 64 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_2019_64_3_a9/ LA - ru ID - TVP_2019_64_3_a9 ER -
A. V. Lebedev. Upper bound for the expected minimum of dependent random variables with known Kendall's tau. Teoriâ veroâtnostej i ee primeneniâ, Tome 64 (2019) no. 3, pp. 578-589. http://geodesic.mathdoc.fr/item/TVP_2019_64_3_a9/