Upper bound for the expected minimum of dependent random variables with known Kendall's tau
Teoriâ veroâtnostej i ee primeneniâ, Tome 64 (2019) no. 3, pp. 578-589 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper is concerned with the expectation of the minimum of two dependent identically distributed nonnegative random variables with known Kendall correlation coefficient. Under certain conditions, the upper bound for this characteristic is obtained. The result derived is illustrated by examples. The problem under consideration can have applications in reliability theory, queueing theory, and financial mathematics.
Keywords: upper bound, minimum, Kendall correlation coefficient.
Mots-clés : maximum, copula, diagonal section
@article{TVP_2019_64_3_a9,
     author = {A. V. Lebedev},
     title = {Upper bound for the expected minimum of dependent random variables with known {Kendall's} tau},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {578--589},
     year = {2019},
     volume = {64},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2019_64_3_a9/}
}
TY  - JOUR
AU  - A. V. Lebedev
TI  - Upper bound for the expected minimum of dependent random variables with known Kendall's tau
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2019
SP  - 578
EP  - 589
VL  - 64
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TVP_2019_64_3_a9/
LA  - ru
ID  - TVP_2019_64_3_a9
ER  - 
%0 Journal Article
%A A. V. Lebedev
%T Upper bound for the expected minimum of dependent random variables with known Kendall's tau
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2019
%P 578-589
%V 64
%N 3
%U http://geodesic.mathdoc.fr/item/TVP_2019_64_3_a9/
%G ru
%F TVP_2019_64_3_a9
A. V. Lebedev. Upper bound for the expected minimum of dependent random variables with known Kendall's tau. Teoriâ veroâtnostej i ee primeneniâ, Tome 64 (2019) no. 3, pp. 578-589. http://geodesic.mathdoc.fr/item/TVP_2019_64_3_a9/

[1] R. B. Nelsen, An introduction to copulas, Springer Ser. Statist., 2nd ed., Springer, New York, 2006, xiv+269 pp. | MR | Zbl

[2] Yaping Wang, Hoang Pham, “Modeling the dependent competing risks with multiple degradation processes and random shock using time-varying copulas”, IEEE Trans. Reliab., 61:1 (2012), 13–22 | DOI

[3] Jianchun Zhang, Xiaobing Ma, Yu Zhao, “A stress-strength time-varying correlation interference model for structural reliability analysis using copulas”, IEEE Trans. Reliab., 66:2 (2017), 351–365 | DOI

[4] R. Nelson, A. N. Tantawi, “Approximate analysis of fork/join synchronization in parallel queues”, IEEE Trans. Comput., 37:6 (1988), 739–743 | DOI

[5] A. Thomasian, “Analysis of fork/join and related queueing systems”, ACM Comput. Surveys, 47:2 (2014), 17, 71 pp. | DOI

[6] A. V. Gorbunova, I. S. Zaryadov, S. I. Matyushenko, K. E. Samuilov, S. Ya. Shorgin, “Approksimatsiya vremeni otklika sistemy oblachnykh vychislenii”, Inform. i ee primen., 9:3 (2015), 32–38 | DOI

[7] Guodong Pang, W. Whitt, “Infinite-server queues with batch arrivals and dependent service times”, Probab. Engrg. Inform. Sci., 26:2 (2012), 197–220 | DOI | MR | Zbl

[8] A. V. Lebedev, “Maximum remaining service time in infinite-server queues”, Problems Inform. Transmission, 54:2 (2018), 176–190 | DOI

[9] A. N. Shiryaev, “Part 1. Facts. Models”, Essentials of stochastic finance, Adv. Ser. Stat. Sci. Appl. Probab., 3, World Sci. Publ., River Edge, NJ, 1999, 2–379 | DOI | MR | Zbl

[10] R. M. Stulz, “Options on the minimum or the maximum of two risky assets: analysis and applications”, J. Financ. Econ., 10:2 (1982), 161–185 | DOI

[11] P. Ouwehand, W. Graeme, “Pricing rainbow options”, Willmott magazine, 2006, May, 74–80 http://finmod.co.za/Pricing

[12] S. V. Podobedova, Raschet spravedlivykh tsen evropeiskikh raduzhnykh optsionov, Materialy Mezhdunarodnogo molodezhnogo nauchnogo foruma “Lomonosov-2017”, MAKS Press, M., 2017, 2 pp. http://lomonosov-msu.ru/archive/Lomonosov_2017/data/10840/uid144109_report.pdf

[13] A. J. McNeil, R. Frey, P. Embrechts, Quantitative risk management. Concepts, techniques and tools, Princet. Ser. Finance, Princeton Univ. Press, Princeton, NJ, 2005, xvi+538 pp. | MR | Zbl

[14] Yu. N. Blagoveschenskii, “Osnovnye elementy teorii kopul”, Prikl. ekonometrika, 26:2 (2012), 113–130 http://pe.cemi.rssi.ru/pe_2012_2_113-130.pdf

[15] R. B. Nelsen, J. J. Quesada Molina, J. A. Rodríguez-Lallena, M. Úbeda-Flores, “Bounds on bivariate distribution functions with given margins and measures of association”, Comm. Statist. Theory Methods, 30:6 (2001), 1055–1062 | DOI | MR | Zbl

[16] R. B. Nelsen, J. J. Quesada Molina, J. A. Rodríguez-Lallena, M. Úbeda Flores, “Best-possible bounds on sets of bivariate distribution functions”, J. Multivariate Anal., 90:2 (2004), 348–358 | DOI | MR | Zbl