Upper bound for the expected minimum of dependent random variables with known Kendall's tau
Teoriâ veroâtnostej i ee primeneniâ, Tome 64 (2019) no. 3, pp. 578-589

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is concerned with the expectation of the minimum of two dependent identically distributed nonnegative random variables with known Kendall correlation coefficient. Under certain conditions, the upper bound for this characteristic is obtained. The result derived is illustrated by examples. The problem under consideration can have applications in reliability theory, queueing theory, and financial mathematics.
Keywords: upper bound, minimum, Kendall correlation coefficient.
Mots-clés : maximum, copula, diagonal section
@article{TVP_2019_64_3_a9,
     author = {A. V. Lebedev},
     title = {Upper bound for the expected minimum of dependent random variables with known {Kendall's} tau},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {578--589},
     publisher = {mathdoc},
     volume = {64},
     number = {3},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2019_64_3_a9/}
}
TY  - JOUR
AU  - A. V. Lebedev
TI  - Upper bound for the expected minimum of dependent random variables with known Kendall's tau
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2019
SP  - 578
EP  - 589
VL  - 64
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2019_64_3_a9/
LA  - ru
ID  - TVP_2019_64_3_a9
ER  - 
%0 Journal Article
%A A. V. Lebedev
%T Upper bound for the expected minimum of dependent random variables with known Kendall's tau
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2019
%P 578-589
%V 64
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2019_64_3_a9/
%G ru
%F TVP_2019_64_3_a9
A. V. Lebedev. Upper bound for the expected minimum of dependent random variables with known Kendall's tau. Teoriâ veroâtnostej i ee primeneniâ, Tome 64 (2019) no. 3, pp. 578-589. http://geodesic.mathdoc.fr/item/TVP_2019_64_3_a9/