Statistical estimate of the traffic coefficient for a multichannel queueing system with regenerative input flow
Teoriâ veroâtnostej i ee primeneniâ, Tome 64 (2019) no. 3, pp. 573-577 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper is concerned with a multichannel queueing system with regenerative input flow Reg/G/m under the conditions of existence of the limit regime. A statistical estimate for the system traffic coefficient is proposed, and its consistency is proved.
Keywords: regenerative input flow, multichannel queueing system, consistent estimate.
Mots-clés : traffic coefficient
@article{TVP_2019_64_3_a8,
     author = {G. A. Krylova},
     title = {Statistical estimate of the traffic coefficient for a multichannel queueing system with regenerative input flow},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {573--577},
     year = {2019},
     volume = {64},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2019_64_3_a8/}
}
TY  - JOUR
AU  - G. A. Krylova
TI  - Statistical estimate of the traffic coefficient for a multichannel queueing system with regenerative input flow
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2019
SP  - 573
EP  - 577
VL  - 64
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TVP_2019_64_3_a8/
LA  - ru
ID  - TVP_2019_64_3_a8
ER  - 
%0 Journal Article
%A G. A. Krylova
%T Statistical estimate of the traffic coefficient for a multichannel queueing system with regenerative input flow
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2019
%P 573-577
%V 64
%N 3
%U http://geodesic.mathdoc.fr/item/TVP_2019_64_3_a8/
%G ru
%F TVP_2019_64_3_a8
G. A. Krylova. Statistical estimate of the traffic coefficient for a multichannel queueing system with regenerative input flow. Teoriâ veroâtnostej i ee primeneniâ, Tome 64 (2019) no. 3, pp. 573-577. http://geodesic.mathdoc.fr/item/TVP_2019_64_3_a8/

[1] L. G. Afanasyeva, E. E. Bashtova, “Coupling method for asymptotic analysis of queues with regenerative input and unreliable server”, Queueing Syst., 76:2 (2014), 125–147 | DOI | MR | Zbl

[2] J. D. C. Little, “A proof for the queueing formula: $L = \lambda W$”, Oper. Res., 9:3 (1961), 383–387 | DOI | MR | Zbl

[3] A. A. Borovkov, Stochastic processes in queueing theory, Appl. Math., 4, Springer-Verlag, New York–Berlin, 1976, xi+280 pp. | DOI | MR | MR | Zbl | Zbl

[4] P. W. Glynn, W. Whitt, “A central-limit-theorem version of $L = \lambda W$”, Queueing Syst., 1:2 (1986), 191–215 | DOI | MR | Zbl

[5] H. Thorisson, Coupling, stationarity, and regeneration, Probab. Appl. (N. Y.), Springer-Verlag, New York, 2000, xiv+517 pp. | MR | Zbl