Multiserver queueing system with constant service time and simultaneous service of a customer by random number of servers
Teoriâ veroâtnostej i ee primeneniâ, Tome 64 (2019) no. 3, pp. 566-572 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper is focused on stability conditions of a multiserver queueing system with regenerative input flow where a random number of servers is simultaneously required for each customer, and each server completion time is constant. It turns out that the stability condition depends on the rate of the input flow rather than on its structure.
Keywords: stability condition, queueing systems, regenerative input flow, synchronization.
@article{TVP_2019_64_3_a7,
     author = {S. A. Grishunina},
     title = {Multiserver queueing system with constant service time and simultaneous service of a customer by random number of servers},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {566--572},
     year = {2019},
     volume = {64},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2019_64_3_a7/}
}
TY  - JOUR
AU  - S. A. Grishunina
TI  - Multiserver queueing system with constant service time and simultaneous service of a customer by random number of servers
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2019
SP  - 566
EP  - 572
VL  - 64
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TVP_2019_64_3_a7/
LA  - ru
ID  - TVP_2019_64_3_a7
ER  - 
%0 Journal Article
%A S. A. Grishunina
%T Multiserver queueing system with constant service time and simultaneous service of a customer by random number of servers
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2019
%P 566-572
%V 64
%N 3
%U http://geodesic.mathdoc.fr/item/TVP_2019_64_3_a7/
%G ru
%F TVP_2019_64_3_a7
S. A. Grishunina. Multiserver queueing system with constant service time and simultaneous service of a customer by random number of servers. Teoriâ veroâtnostej i ee primeneniâ, Tome 64 (2019) no. 3, pp. 566-572. http://geodesic.mathdoc.fr/item/TVP_2019_64_3_a7/

[1] P. H. Brill, L. Green, “Queues in which customers receive simultaneous service from a random number of servers: a system point approach”, Management Sci., 30:1 (1984), 51–68 | DOI | MR | Zbl

[2] P. Ittimakin, E. P. C. Kao, “Stationary waiting time distribution of a queue in which customers require a random number of servers”, Oper. Res., 39:4 (1991), 633–638 | DOI | Zbl

[3] W. Whitt, “Blocking when service is required from several facilities simultaneously”, AT and T Tech. J., 64:8 (1985), 1807–1856 | DOI | MR | Zbl

[4] A. Rumyantsev, E. Morozov, “Stability criterion of a multi-server model with simultaneous service”, Ann. Oper. Res., 252:1 (2017), 29–39 | DOI | MR | Zbl

[5] L. G. Afanasyeva, E. E. Bashtova, “Coupling method for asymptotic analysis of queues with regenerative input and unreliable server”, Queueing Syst., 76:2 (2014), 125–147 | DOI | MR | Zbl

[6] L. G. Afanasyeva, A. V. Tkachenko, “Stability conditions for queueing systems with regenerative flow of interruptions”, Theory Probab. Appl., 63:4 (2019), 507–531 | DOI | DOI | MR | Zbl

[7] W. L. Smith, “Regenerative stochastic processes”, Proc. Roy. Soc. London. Ser. A, 232:1188 (1955), 6–31 | DOI | MR | Zbl

[8] H. Thorisson, Coupling, stationarity, and regeneration, Probab. Appl. (N. Y.), Springer-Verlag, New York, 2000, xiv+517 pp. | MR | Zbl

[9] L. G. Afanasyeva, A. V. Tkachenko, “Multichannel queueing systems with regenerative input flow”, Theory Probab. Appl., 58:2 (2014), 174–192 | DOI | DOI | MR | Zbl

[10] T. N. Belorusov, “Ergodicity of a multichannel queueing system with balking”, Theory Probab. Appl., 56:1 (2012), 120–126 | DOI | DOI | MR | Zbl

[11] W. Feller, An introduction to probability theory and its applications, v. 1, 2nd ed., John Wiley and Sons, Inc., New York, NY, USA; Chapman and Hall, Ltd., London, 1957, xv+461 pp. | MR | Zbl | Zbl