@article{TVP_2019_64_3_a7,
author = {S. A. Grishunina},
title = {Multiserver queueing system with constant service time and simultaneous service of a customer by random number of servers},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {566--572},
year = {2019},
volume = {64},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2019_64_3_a7/}
}
TY - JOUR AU - S. A. Grishunina TI - Multiserver queueing system with constant service time and simultaneous service of a customer by random number of servers JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2019 SP - 566 EP - 572 VL - 64 IS - 3 UR - http://geodesic.mathdoc.fr/item/TVP_2019_64_3_a7/ LA - ru ID - TVP_2019_64_3_a7 ER -
%0 Journal Article %A S. A. Grishunina %T Multiserver queueing system with constant service time and simultaneous service of a customer by random number of servers %J Teoriâ veroâtnostej i ee primeneniâ %D 2019 %P 566-572 %V 64 %N 3 %U http://geodesic.mathdoc.fr/item/TVP_2019_64_3_a7/ %G ru %F TVP_2019_64_3_a7
S. A. Grishunina. Multiserver queueing system with constant service time and simultaneous service of a customer by random number of servers. Teoriâ veroâtnostej i ee primeneniâ, Tome 64 (2019) no. 3, pp. 566-572. http://geodesic.mathdoc.fr/item/TVP_2019_64_3_a7/
[1] P. H. Brill, L. Green, “Queues in which customers receive simultaneous service from a random number of servers: a system point approach”, Management Sci., 30:1 (1984), 51–68 | DOI | MR | Zbl
[2] P. Ittimakin, E. P. C. Kao, “Stationary waiting time distribution of a queue in which customers require a random number of servers”, Oper. Res., 39:4 (1991), 633–638 | DOI | Zbl
[3] W. Whitt, “Blocking when service is required from several facilities simultaneously”, AT and T Tech. J., 64:8 (1985), 1807–1856 | DOI | MR | Zbl
[4] A. Rumyantsev, E. Morozov, “Stability criterion of a multi-server model with simultaneous service”, Ann. Oper. Res., 252:1 (2017), 29–39 | DOI | MR | Zbl
[5] L. G. Afanasyeva, E. E. Bashtova, “Coupling method for asymptotic analysis of queues with regenerative input and unreliable server”, Queueing Syst., 76:2 (2014), 125–147 | DOI | MR | Zbl
[6] L. G. Afanasyeva, A. V. Tkachenko, “Stability conditions for queueing systems with regenerative flow of interruptions”, Theory Probab. Appl., 63:4 (2019), 507–531 | DOI | DOI | MR | Zbl
[7] W. L. Smith, “Regenerative stochastic processes”, Proc. Roy. Soc. London. Ser. A, 232:1188 (1955), 6–31 | DOI | MR | Zbl
[8] H. Thorisson, Coupling, stationarity, and regeneration, Probab. Appl. (N. Y.), Springer-Verlag, New York, 2000, xiv+517 pp. | MR | Zbl
[9] L. G. Afanasyeva, A. V. Tkachenko, “Multichannel queueing systems with regenerative input flow”, Theory Probab. Appl., 58:2 (2014), 174–192 | DOI | DOI | MR | Zbl
[10] T. N. Belorusov, “Ergodicity of a multichannel queueing system with balking”, Theory Probab. Appl., 56:1 (2012), 120–126 | DOI | DOI | MR | Zbl
[11] W. Feller, An introduction to probability theory and its applications, v. 1, 2nd ed., John Wiley and Sons, Inc., New York, NY, USA; Chapman and Hall, Ltd., London, 1957, xv+461 pp. | MR | Zbl | Zbl