The estimate of $\chi^2$-distance between binomial and generalized binomial distributions
Teoriâ veroâtnostej i ee primeneniâ, Tome 64 (2019) no. 3, pp. 552-565 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We obtain an estimate of the difference between binomial and generalized binomial distributions with respect to the $\chi^2$-metric and several other related metrics.
Mots-clés : binomial distribution
Keywords: independent indicator, $\chi^2$-distance, Parseval identity.
@article{TVP_2019_64_3_a6,
     author = {V. Zacharovas},
     title = {The estimate of $\chi^2$-distance between binomial and generalized binomial distributions},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {552--565},
     year = {2019},
     volume = {64},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2019_64_3_a6/}
}
TY  - JOUR
AU  - V. Zacharovas
TI  - The estimate of $\chi^2$-distance between binomial and generalized binomial distributions
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2019
SP  - 552
EP  - 565
VL  - 64
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TVP_2019_64_3_a6/
LA  - ru
ID  - TVP_2019_64_3_a6
ER  - 
%0 Journal Article
%A V. Zacharovas
%T The estimate of $\chi^2$-distance between binomial and generalized binomial distributions
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2019
%P 552-565
%V 64
%N 3
%U http://geodesic.mathdoc.fr/item/TVP_2019_64_3_a6/
%G ru
%F TVP_2019_64_3_a6
V. Zacharovas. The estimate of $\chi^2$-distance between binomial and generalized binomial distributions. Teoriâ veroâtnostej i ee primeneniâ, Tome 64 (2019) no. 3, pp. 552-565. http://geodesic.mathdoc.fr/item/TVP_2019_64_3_a6/

[1] L. H. Y. Chen, Hsien-Kuei Hwang, V. Zacharovas, “Distribution of the sum-of-digits function of random integers: A survey”, Probab. Surv., 11 (2014), 177–236 | DOI | MR | Zbl

[2] W. Ehm, “Binomial approximation to the Poisson binomial distribution”, Statist. Probab. Lett., 11:1 (1991), 7–16 | DOI | MR | Zbl

[3] E. A. Peköz, A. Röllin, V. Čekanavičius, M. Shwartz, “A three-parameter binomial approximation”, J. Appl. Probab., 46:4 (2009), 1073–1085 | DOI | MR | Zbl

[4] B. Roos, “Binomial approximation to the Poisson binomial distribution: the Krawtchouk expansion”, Teoriya veroyatn. i ee primen., 45:2 (2000), 328–344 | DOI | MR | Zbl

[5] B. Roos, “On Bobkov's approximate de Finetti representation via approximation of permanents of complex rectangular matrices”, Proc. Amer. Math. Soc., 143:4 (2015), 1785–1796 | DOI | MR | Zbl

[6] V. Zacharovas, H.-K. Hwang, “A Charlier–Parseval approach to Poisson approximation and its applications”, Lith. Math. J., 50:1 (2010), 88–119 | DOI | MR | Zbl