The estimate of $\chi^2$-distance between binomial and generalized binomial distributions
Teoriâ veroâtnostej i ee primeneniâ, Tome 64 (2019) no. 3, pp. 552-565
Voir la notice de l'article provenant de la source Math-Net.Ru
We obtain an estimate of the difference between binomial and generalized
binomial distributions with respect to the $\chi^2$-metric and
several other related metrics.
Mots-clés :
binomial distribution
Keywords: independent indicator, $\chi^2$-distance, Parseval identity.
Keywords: independent indicator, $\chi^2$-distance, Parseval identity.
@article{TVP_2019_64_3_a6,
author = {V. Zacharovas},
title = {The estimate of $\chi^2$-distance between binomial and generalized binomial distributions},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {552--565},
publisher = {mathdoc},
volume = {64},
number = {3},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2019_64_3_a6/}
}
TY - JOUR AU - V. Zacharovas TI - The estimate of $\chi^2$-distance between binomial and generalized binomial distributions JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2019 SP - 552 EP - 565 VL - 64 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_2019_64_3_a6/ LA - ru ID - TVP_2019_64_3_a6 ER -
V. Zacharovas. The estimate of $\chi^2$-distance between binomial and generalized binomial distributions. Teoriâ veroâtnostej i ee primeneniâ, Tome 64 (2019) no. 3, pp. 552-565. http://geodesic.mathdoc.fr/item/TVP_2019_64_3_a6/