Semimartingale decomposition and heat kernel estimates of reflected stable-like processes with variable order
Teoriâ veroâtnostej i ee primeneniâ, Tome 64 (2019) no. 3, pp. 526-551

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate symmetric reflected stable-like processes on a compact set $ \overline{E} \subset \mathbf{R}^d$ associated to nonlocal Dirichlet forms with variable order $\alpha{(\,\cdot\,,\cdot\,)}$ in the jump intensity kernels. First, assuming two-sided estimates of the continuous transition density of the reflected stable-like process $(X_t)_{t \ge 0}$, similarly to [Q.-Y. Guan and Z.-M. Ma, Probab. Theory Related Fields, 134 (2006), pp. 649–694], we obtain the semimartingale decomposition of the process $(X_t)_{t \ge 0}$. Then by adding more conditions on $\alpha{(\,\cdot\,,\cdot\,)}$, we explicitly derive upper and lower bound estimates of the Hölder continuous transition density of $(X_t)_{t \ge 0}$.
Keywords: semimartingale decomposition, Dirichlet forms, reflected stable-like processes, heat kernel estimates, Hölder continuity.
@article{TVP_2019_64_3_a5,
     author = {J. Shin},
     title = {Semimartingale decomposition and heat kernel estimates of reflected stable-like processes with variable order},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {526--551},
     publisher = {mathdoc},
     volume = {64},
     number = {3},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2019_64_3_a5/}
}
TY  - JOUR
AU  - J. Shin
TI  - Semimartingale decomposition and heat kernel estimates of reflected stable-like processes with variable order
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2019
SP  - 526
EP  - 551
VL  - 64
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2019_64_3_a5/
LA  - ru
ID  - TVP_2019_64_3_a5
ER  - 
%0 Journal Article
%A J. Shin
%T Semimartingale decomposition and heat kernel estimates of reflected stable-like processes with variable order
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2019
%P 526-551
%V 64
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2019_64_3_a5/
%G ru
%F TVP_2019_64_3_a5
J. Shin. Semimartingale decomposition and heat kernel estimates of reflected stable-like processes with variable order. Teoriâ veroâtnostej i ee primeneniâ, Tome 64 (2019) no. 3, pp. 526-551. http://geodesic.mathdoc.fr/item/TVP_2019_64_3_a5/