Mots-clés : Hölder continuity.
@article{TVP_2019_64_3_a5,
author = {J. Shin},
title = {Semimartingale decomposition and heat kernel estimates of reflected stable-like processes with variable order},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {526--551},
year = {2019},
volume = {64},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2019_64_3_a5/}
}
TY - JOUR AU - J. Shin TI - Semimartingale decomposition and heat kernel estimates of reflected stable-like processes with variable order JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2019 SP - 526 EP - 551 VL - 64 IS - 3 UR - http://geodesic.mathdoc.fr/item/TVP_2019_64_3_a5/ LA - ru ID - TVP_2019_64_3_a5 ER -
J. Shin. Semimartingale decomposition and heat kernel estimates of reflected stable-like processes with variable order. Teoriâ veroâtnostej i ee primeneniâ, Tome 64 (2019) no. 3, pp. 526-551. http://geodesic.mathdoc.fr/item/TVP_2019_64_3_a5/
[1] M. T. Barlow, R. F. Bass, Zhen-Qing Chen, M. Kassmann, “Non-local Dirichlet forms and symmetric jump processes”, Trans. Amer. Math. Soc., 361:4 (2009), 1963–1999 | DOI | MR | Zbl
[2] M. T. Barlow, A. Grygor'yan, T. Kumagai, “Heat kernel upper bounds for jump processes and the first exit time”, J. Reine Angew. Math., 2009:626 (2009), 135–157 | DOI | MR | Zbl
[3] R. F. Bass, D. A. Levin, “Harnack inequalities for jump processes”, Potential Anal., 17:4 (2002), 375–388 | DOI | MR | Zbl
[4] E. A. Carlen, S. Kusuoka, D. W. Strook, “Upper bounds for symmetric Markov transition functions”, Ann. Inst. H. Poincaré Probab. Statist., 23:2, suppl. (1987), 245–287 | MR | Zbl
[5] Zhen-Qing Chen, T. Kumagai, “Heat kernel estimates for stable-like processes on $d$-sets”, Stochastic Process. Appl., 108:1 (2003), 27–62 | DOI | MR | Zbl
[6] Zhen-Qing Chen, T. Kumagai, “Heat kernel estimates for jump processes of mixed types on metric measure spaces”, Probab. Theory Related Fields, 140:1-2 (2008), 277–317 | DOI | MR | Zbl
[7] Zhen-Qing Chen, T. Kumagai, Jian Wang, Stability of heat kernel estimates for symmetric jump processes on metric measure spaces, 2016, arXiv: 1604.04035v2
[8] M. Fukushima, Y. Oshima, M. Takeda, Dirichlet forms and symmetric Markov processes, De Gruyter Stud. Math., 19, 2nd rev. and ext. ed., Walter de Gruyter Co., Berlin, 2011, x+489 pp. | MR | Zbl
[9] Qing-Yang Guan, “Integration by parts formula for regional fractional Laplacian”, Comm. Math. Phys., 266:2 (2006), 289–329 | DOI | MR | Zbl
[10] Qing-Yang Guan, Zhi-Ming Ma, “Reflected symmetric $\alpha$-stable processes and regional fractional Laplacian”, Probab. Theory Related Fields, 134:4 (2006), 649–694 | DOI | MR | Zbl
[11] Jiaxin Hu, T. Kumagai, “Nash-type inequalities and heat kernels for non-local Dirichlet forms”, Kyushu J. Math., 60:2 (2006), 245–265 | DOI | MR | Zbl
[12] P. A. Meyer, “Renaissance, recollements, mélanges, ralentissement de processus de Markov”, Ann. Inst. Fourier (Grenoble), 25:3-4 (1975), xxiii, 465–497 | DOI | MR | Zbl
[13] A. Stós, “Symmetric $\alpha$-stable processes on $d$-sets”, Bull. Polish Acad. Sci. Math., 48:3 (2000), 237–245 | MR | Zbl