Berry–Esseen bounds and ASCLTs for drift parameter estimator of mixed fractional Ornstein–Uhlenbeck process with discrete observations
Teoriâ veroâtnostej i ee primeneniâ, Tome 64 (2019) no. 3, pp. 502-525 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we study the problem of estimating the drift of mixed fractional Ornstein–Uhlenbeck processes with fixed-time-step observations. Using Malliavin calculus and the recent Nourdin–Peccati analysis, we analyze the asymptotic behavior of the estimator. More precisely, we study the strong consistency and the asymptotic distribution of the estimator, and we also provide the rate of its convergence in law for all $H\in (0,1)$. Moreover, we prove that the estimator satisfies an almost sure central limit theorem for all $H\in (0,{3}/{4}]$.
Keywords: parameter estimation, mixed Ornstein–Uhlenbeck process, central limit theorem, Nourdin–Peccati analysis, almost sure central limit theorem.
@article{TVP_2019_64_3_a4,
     author = {F. Alazemi and S. Douissi and Kh. Es-Sebaiy},
     title = {Berry{\textendash}Esseen bounds and {ASCLTs} for drift parameter estimator of mixed fractional {Ornstein{\textendash}Uhlenbeck} process with discrete observations},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {502--525},
     year = {2019},
     volume = {64},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2019_64_3_a4/}
}
TY  - JOUR
AU  - F. Alazemi
AU  - S. Douissi
AU  - Kh. Es-Sebaiy
TI  - Berry–Esseen bounds and ASCLTs for drift parameter estimator of mixed fractional Ornstein–Uhlenbeck process with discrete observations
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2019
SP  - 502
EP  - 525
VL  - 64
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TVP_2019_64_3_a4/
LA  - ru
ID  - TVP_2019_64_3_a4
ER  - 
%0 Journal Article
%A F. Alazemi
%A S. Douissi
%A Kh. Es-Sebaiy
%T Berry–Esseen bounds and ASCLTs for drift parameter estimator of mixed fractional Ornstein–Uhlenbeck process with discrete observations
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2019
%P 502-525
%V 64
%N 3
%U http://geodesic.mathdoc.fr/item/TVP_2019_64_3_a4/
%G ru
%F TVP_2019_64_3_a4
F. Alazemi; S. Douissi; Kh. Es-Sebaiy. Berry–Esseen bounds and ASCLTs for drift parameter estimator of mixed fractional Ornstein–Uhlenbeck process with discrete observations. Teoriâ veroâtnostej i ee primeneniâ, Tome 64 (2019) no. 3, pp. 502-525. http://geodesic.mathdoc.fr/item/TVP_2019_64_3_a4/

[1] E. Azmoodeh, J. I. Morlanes, “Drift parameter estimation for fractional Ornstein–Uhlenbeck process of the second kind”, Statistics, 49:1 (2015), 1–18 | DOI | MR | Zbl

[2] E. Azmoodeh, L. Viitasaari, “Parameter estimation based on discrete observations of fractional Ornstein–Uhlenbeck process of the second kind”, Stat. Inference Stoch. Process., 18:3 (2015), 205–227 | DOI | MR | Zbl

[3] R. Belfadli, K. Es-Sebaiy, Y. Ouknine, “Parameter estimation for fractional Ornstein–Uhlenbeck processes: non-ergodic case”, Frontiers in Science and Engineering. An International Journal Edited by Hassan II Academy of Science and Technology, 1:1 (2011), 1–16

[4] B. Bercu, I. Nourdin, M. S. Taqqu, “Almost sure central limit theorems on the Wiener space”, Stochastic Process. Appl., 120:9 (2010), 1607–1628 | DOI | MR | Zbl

[5] A. Brouste, S. M. Iacus, “Parameter estimation for the discretely observed fractional Ornstein–Uhlenbeck process and the Yuima R package”, Comput. Statist., 28:4 (2013), 1529–1547 | DOI | MR | Zbl

[6] Chunhao Cai, Weilin Xiao, Stochastic integral with respect to the mixed fractional Brownian motion and drift estimation of the mixed fraction Ornstein–Uhlenbeck process, 2018, arXiv: 1802.00982

[7] P. Cénac, K. Es-Sebaiy, “Almost sure central limit theorems for random ratios and applications to LSE for fractional Ornstein–Uhlenbeck processes”, Probab. Math. Statist., 35:2 (2015), 285–300 | MR | Zbl

[8] P. Cheridito, “Mixed fractional Brownian motion”, Bernoulli, 7:6 (2001), 913–934 | DOI | MR | Zbl

[9] P. Cheridito, H. Kawaguchi, M. Maejima, “Fractional Ornstein–Uhlenbeck processes”, Electron. J. Probab., 8 (2003), 3, 14 pp. | DOI | MR | Zbl

[10] P. Chigansky, M. Kleptsyna, “Statistical analysis of the mixed fractional Ornstein–Uhlenbeck process”, Teoriya veroyatn. i ee primen., 63:3 (2018), 500–519 ; Theory Probab. Appl., 63:3 (2019), 408–425 | DOI | MR | Zbl | DOI

[11] S. Douissi, K. Es-Sebaiy, F. G. Viens, “Berry–Esseen bounds for parameter estimation of general Gaussian processes”, ALEA Lat. Am. J. Probab. Math. Stat., 16:1 (2019), 633–664 | DOI | Zbl

[12] M. El Machkouri, K. Es-Sebaiy, Y. Ouknine, “Least squares estimator for non-ergodic Ornstein–Uhlenbeck processes driven by Gaussian processes”, J. Korean Statist. Soc., 45:3 (2016), 329–341 | DOI | MR | Zbl

[13] B. El Onsy, K. Es-Sebaiy, C. A. Tudor, “Statistical analysis of the non-ergodic fractional Ornstein–Uhlenbeck process of the second kind”, Commun. Stoch. Anal., 11:2 (2017), 119–136 | DOI | MR

[14] B. El Onsy, K. Es-Sebaiy, F. G. Viens, “Parameter estimation for a partially observed Ornstein–Uhlenbeck process with long-memory noise”, Stochastics, 89:2 (2017), 431–468 | DOI | MR | Zbl

[15] K. Es-Sebaiy, F. Viens, “Optimal rates for parameter estimation of stationary Gaussian processes”, Stochastic Process. Appl., first online 2018 | DOI

[16] Yaozhong Hu, D. Nualart, “Parameter estimation for fractional Ornstein–Uhlenbeck processes”, Statist. Probab. Lett., 80:11-12 (2010), 1030–1038 | DOI | MR | Zbl

[17] Yaozhong Hu, Jian Song, “Parameter estimation for fractional Ornstein–Uhlenbeck processes with discrete observations”, Malliavin calculus and stochastic analysis, Springer Proc. Math. Stat., 34, Springer, New York, 2013, 427–442 | DOI | MR | Zbl

[18] P. E. Kloeden, A. Neuenkirch, “The pathwise convergence of approximation schemes for stochastic differential equations”, LMS J. Comput. Math., 10 (2007), 235–253 | DOI | MR | Zbl

[19] A. Neuenkirch, S. Tindel, “A least square-type procedure for parameter estimation in stochastic differential equations with additive fractional noise”, Stat. Inference Stoch. Process., 17:1 (2014), 99–120 | DOI | MR | Zbl

[20] L. Neufcourt, F. G. Viens, “A third-moment theorem and precise asymptotics for variations of stationary Gaussian sequences”, ALEA Lat. Am. J. Probab. Math. Stat., 13:1 (2016), 239–264 | MR | Zbl

[21] I. Nourdin, G. Peccati, Normal approximations with Malliavin calculus. From Stein's method to universality, Cambridge Tracts in Math., 192, Cambridge Univ. Press, Cambridge, 2012, xiv+239 pp. | DOI | MR | Zbl

[22] I. Nourdin, G. Peccati, “The optimal fourth moment theorem”, Proc. Amer. Math. Soc., 143:7 (2015), 3123–3133 | DOI | MR | Zbl

[23] D. Nualart, The Malliavin calculus and related topics, Probab. Appl. (N. Y.), 2nd ed., Springer-Verlag, Berlin, 2006, xiv+382 pp. | DOI | MR | Zbl

[24] D. Nualart, G. Peccati, “Central limit theorems for sequences of multiple stochastic integrals”, Ann. Probab., 33:1 (2005), 177–193 | DOI | MR | Zbl

[25] L. C. Young, “An inequality of the Hölder type, connected with Stieltjes integration”, Acta Math., 67:1 (1936), 251–282 | DOI | MR | Zbl

[26] M. Zili, “On the mixed fractional Brownian motion”, J. Appl. Math. Stoch. Anal., 2006 (2006), 32435, 9 pp. | DOI | MR | Zbl