@article{TVP_2019_64_3_a4,
author = {F. Alazemi and S. Douissi and Kh. Es-Sebaiy},
title = {Berry{\textendash}Esseen bounds and {ASCLTs} for drift parameter estimator of mixed fractional {Ornstein{\textendash}Uhlenbeck} process with discrete observations},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {502--525},
year = {2019},
volume = {64},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2019_64_3_a4/}
}
TY - JOUR AU - F. Alazemi AU - S. Douissi AU - Kh. Es-Sebaiy TI - Berry–Esseen bounds and ASCLTs for drift parameter estimator of mixed fractional Ornstein–Uhlenbeck process with discrete observations JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2019 SP - 502 EP - 525 VL - 64 IS - 3 UR - http://geodesic.mathdoc.fr/item/TVP_2019_64_3_a4/ LA - ru ID - TVP_2019_64_3_a4 ER -
%0 Journal Article %A F. Alazemi %A S. Douissi %A Kh. Es-Sebaiy %T Berry–Esseen bounds and ASCLTs for drift parameter estimator of mixed fractional Ornstein–Uhlenbeck process with discrete observations %J Teoriâ veroâtnostej i ee primeneniâ %D 2019 %P 502-525 %V 64 %N 3 %U http://geodesic.mathdoc.fr/item/TVP_2019_64_3_a4/ %G ru %F TVP_2019_64_3_a4
F. Alazemi; S. Douissi; Kh. Es-Sebaiy. Berry–Esseen bounds and ASCLTs for drift parameter estimator of mixed fractional Ornstein–Uhlenbeck process with discrete observations. Teoriâ veroâtnostej i ee primeneniâ, Tome 64 (2019) no. 3, pp. 502-525. http://geodesic.mathdoc.fr/item/TVP_2019_64_3_a4/
[1] E. Azmoodeh, J. I. Morlanes, “Drift parameter estimation for fractional Ornstein–Uhlenbeck process of the second kind”, Statistics, 49:1 (2015), 1–18 | DOI | MR | Zbl
[2] E. Azmoodeh, L. Viitasaari, “Parameter estimation based on discrete observations of fractional Ornstein–Uhlenbeck process of the second kind”, Stat. Inference Stoch. Process., 18:3 (2015), 205–227 | DOI | MR | Zbl
[3] R. Belfadli, K. Es-Sebaiy, Y. Ouknine, “Parameter estimation for fractional Ornstein–Uhlenbeck processes: non-ergodic case”, Frontiers in Science and Engineering. An International Journal Edited by Hassan II Academy of Science and Technology, 1:1 (2011), 1–16
[4] B. Bercu, I. Nourdin, M. S. Taqqu, “Almost sure central limit theorems on the Wiener space”, Stochastic Process. Appl., 120:9 (2010), 1607–1628 | DOI | MR | Zbl
[5] A. Brouste, S. M. Iacus, “Parameter estimation for the discretely observed fractional Ornstein–Uhlenbeck process and the Yuima R package”, Comput. Statist., 28:4 (2013), 1529–1547 | DOI | MR | Zbl
[6] Chunhao Cai, Weilin Xiao, Stochastic integral with respect to the mixed fractional Brownian motion and drift estimation of the mixed fraction Ornstein–Uhlenbeck process, 2018, arXiv: 1802.00982
[7] P. Cénac, K. Es-Sebaiy, “Almost sure central limit theorems for random ratios and applications to LSE for fractional Ornstein–Uhlenbeck processes”, Probab. Math. Statist., 35:2 (2015), 285–300 | MR | Zbl
[8] P. Cheridito, “Mixed fractional Brownian motion”, Bernoulli, 7:6 (2001), 913–934 | DOI | MR | Zbl
[9] P. Cheridito, H. Kawaguchi, M. Maejima, “Fractional Ornstein–Uhlenbeck processes”, Electron. J. Probab., 8 (2003), 3, 14 pp. | DOI | MR | Zbl
[10] P. Chigansky, M. Kleptsyna, “Statistical analysis of the mixed fractional Ornstein–Uhlenbeck process”, Teoriya veroyatn. i ee primen., 63:3 (2018), 500–519 ; Theory Probab. Appl., 63:3 (2019), 408–425 | DOI | MR | Zbl | DOI
[11] S. Douissi, K. Es-Sebaiy, F. G. Viens, “Berry–Esseen bounds for parameter estimation of general Gaussian processes”, ALEA Lat. Am. J. Probab. Math. Stat., 16:1 (2019), 633–664 | DOI | Zbl
[12] M. El Machkouri, K. Es-Sebaiy, Y. Ouknine, “Least squares estimator for non-ergodic Ornstein–Uhlenbeck processes driven by Gaussian processes”, J. Korean Statist. Soc., 45:3 (2016), 329–341 | DOI | MR | Zbl
[13] B. El Onsy, K. Es-Sebaiy, C. A. Tudor, “Statistical analysis of the non-ergodic fractional Ornstein–Uhlenbeck process of the second kind”, Commun. Stoch. Anal., 11:2 (2017), 119–136 | DOI | MR
[14] B. El Onsy, K. Es-Sebaiy, F. G. Viens, “Parameter estimation for a partially observed Ornstein–Uhlenbeck process with long-memory noise”, Stochastics, 89:2 (2017), 431–468 | DOI | MR | Zbl
[15] K. Es-Sebaiy, F. Viens, “Optimal rates for parameter estimation of stationary Gaussian processes”, Stochastic Process. Appl., first online 2018 | DOI
[16] Yaozhong Hu, D. Nualart, “Parameter estimation for fractional Ornstein–Uhlenbeck processes”, Statist. Probab. Lett., 80:11-12 (2010), 1030–1038 | DOI | MR | Zbl
[17] Yaozhong Hu, Jian Song, “Parameter estimation for fractional Ornstein–Uhlenbeck processes with discrete observations”, Malliavin calculus and stochastic analysis, Springer Proc. Math. Stat., 34, Springer, New York, 2013, 427–442 | DOI | MR | Zbl
[18] P. E. Kloeden, A. Neuenkirch, “The pathwise convergence of approximation schemes for stochastic differential equations”, LMS J. Comput. Math., 10 (2007), 235–253 | DOI | MR | Zbl
[19] A. Neuenkirch, S. Tindel, “A least square-type procedure for parameter estimation in stochastic differential equations with additive fractional noise”, Stat. Inference Stoch. Process., 17:1 (2014), 99–120 | DOI | MR | Zbl
[20] L. Neufcourt, F. G. Viens, “A third-moment theorem and precise asymptotics for variations of stationary Gaussian sequences”, ALEA Lat. Am. J. Probab. Math. Stat., 13:1 (2016), 239–264 | MR | Zbl
[21] I. Nourdin, G. Peccati, Normal approximations with Malliavin calculus. From Stein's method to universality, Cambridge Tracts in Math., 192, Cambridge Univ. Press, Cambridge, 2012, xiv+239 pp. | DOI | MR | Zbl
[22] I. Nourdin, G. Peccati, “The optimal fourth moment theorem”, Proc. Amer. Math. Soc., 143:7 (2015), 3123–3133 | DOI | MR | Zbl
[23] D. Nualart, The Malliavin calculus and related topics, Probab. Appl. (N. Y.), 2nd ed., Springer-Verlag, Berlin, 2006, xiv+382 pp. | DOI | MR | Zbl
[24] D. Nualart, G. Peccati, “Central limit theorems for sequences of multiple stochastic integrals”, Ann. Probab., 33:1 (2005), 177–193 | DOI | MR | Zbl
[25] L. C. Young, “An inequality of the Hölder type, connected with Stieltjes integration”, Acta Math., 67:1 (1936), 251–282 | DOI | MR | Zbl
[26] M. Zili, “On the mixed fractional Brownian motion”, J. Appl. Math. Stoch. Anal., 2006 (2006), 32435, 9 pp. | DOI | MR | Zbl