@article{TVP_2019_64_3_a3,
author = {A. L. Yakymiv},
title = {Abelian theorem for the regularly varying measure and its density in orthant},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {481--501},
year = {2019},
volume = {64},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2019_64_3_a3/}
}
A. L. Yakymiv. Abelian theorem for the regularly varying measure and its density in orthant. Teoriâ veroâtnostej i ee primeneniâ, Tome 64 (2019) no. 3, pp. 481-501. http://geodesic.mathdoc.fr/item/TVP_2019_64_3_a3/
[1] N. H. Abel, “Untersuchungen über die Reihe: $1+\frac{m}{1}x+\frac{m\cdot(m-1)}{1\cdot2}\cdot x^2+\frac{m\cdot(m-1)\cdot(m-2)}{1\cdot2\cdot3}\cdot x^3+\dots\,\mathrm{u.s.w.}$”, J. Reine Angew. Math., 1 (1826), 311–339 | DOI | MR | Zbl
[2] N. H. Bingham, C. M. Goldie, J. L. Teugels, Regular variation, Encyclopedia Math. Appl., 27, Cambridge Univ. Press, Cambridge, 1987, xx+491 pp. | DOI | MR | Zbl
[3] Yu. N. Drozhzhinov, B. I. Zav'yalov, “Multidimensional Abelian and Tauberian comparison theorems”, Math. USSR-Sb., 68:1 (1991), 85–110 | DOI | MR | Zbl
[4] Yu. N. Drozhzhinov, “Multidimensional Tauberian theorems for generalized functions”, Russian Math. Surveys, 71:6 (2016), 1081–1134 | DOI | DOI | MR | Zbl
[5] N. L. Johnson, S. Kotz, A. W. Kemp, Univariate discrete distributions, Wiley Ser. Probab. Math. Statist. Appl. Probab. Statist., 2nd ed., John Wiley Sons, Inc., New York, 1992, xxii+565 pp. | MR | Zbl
[6] S. Kotz, N. Balakrishnan, N. L. Johnson, Continuous multivariate distributions, v. 1, Wiley Ser. Probab. Statist. Appl. Probab. Statist., Models and applications, 2nd ed., Wiley-Interscience, New York, 2000, xxii+722 pp. | DOI | MR | Zbl
[7] N. L. Johnson, S. Kotz, N. Balakrishnan, Discrete multivariate distributions, Wiley Ser. Probab. Statist. Appl. Probab. Statist., John Wiley Sons, Inc., New York, 1997, xxii+299 pp. | MR | Zbl
[8] V. M. Zolotarev, “On the asymptotic behavior of a class of infinitely divisible laws”, Theory Probab. Appl., 6:3 (1961), 304–307 | DOI | MR | Zbl
[9] V. F. Kolchin, “A certain class of limit theorems for conditional distributions”, Selected translations in mathematical statistics and probability, 11, Amer. Math. Soc., Providence, RI, 1973, 185–197 | MR | MR | Zbl | Zbl
[10] V. F. Kolchin, Random mappings, Transl. Ser. Math. Engrg., Optimization Software, Inc., Publications Division, New York, 1986, xiv+207 pp. | MR | MR | Zbl | Zbl
[11] V. F. Kolchin, Random graphs, Encyclopedia Math. Appl., 53, Cambridge Univ. Press, Cambridge, 1999, xii+252 pp. | MR | MR | Zbl | Zbl
[12] A. Noack, “A class of random variables with discrete distributions”, Ann. Math. Statistics, 21 (1950), 127–132 | DOI | MR | Zbl
[13] E. Omey, Multivariate regular variation and application in probability theory, Eclectica, 74, EHSAL, Brussel, Belgium, 1989, 59 pp.
[14] Yu. L. Pavlov, Random forests, VSP, Utrecht, 2000, 122 pp.
[15] A. G. Postnikov, “Tauberian theory and its applications”, Proc. Steklov Inst. Math., 144 (1980), 1–138 | MR | Zbl
[16] E. Seneta, Regularly varying functions, Lecture Notes in Math., 508, Springer-Verlag, Berlin–New York, 1976, v+112 pp. | DOI | MR | MR | Zbl | Zbl
[17] A. Tauber, “Ein Satz aus der Theorie der unendlichen Reihen”, Monatsh. Math. Phys., 8:1 (1897), 273–277 | DOI | MR | Zbl
[18] A. N. Timashev, Raspredeleniya tipa stepennogo ryada i obobschennaya skhema razmescheniya, Akademiya, M., 2016, 167 pp.
[19] A. N. Timashev, Sluchainye komponenty v obobschennoi skheme razmescheniya, Akademiya, M., 2017, 119 pp.
[20] A. N. Timashev, “Limit theorems for power-series distributions with finite radius of convergence”, Theory Probab. Appl., 63:1 (2018), 45–56 | DOI | DOI | MR | Zbl
[21] A. L. Jakymiv, “Multidimensional Tauberian theorems and their application to Bellman–Harris branching processes”, Math. USSR-Sb., 43:3 (1982), 413–425 | DOI | MR | Zbl
[22] A. L. Yakimiv, Probabilistic applications of Tauberian theorems, Mod. Probab. Stat., VSP, Leiden, 2005, viii+225 pp. | DOI | MR | Zbl | Zbl
[23] A. L. Yakymiv, “Limit theorem for the middle members of ordered cycle lengths in random $A$-permutations”, Theory Probab. Appl., 54:1 (2010), 114–128 | DOI | DOI | MR | Zbl
[24] A. L. Yakymiv, “A limit theorem for the logarithm of the order of a random $A$-permutation”, Discrete Math. Appl., 20:3 (2010), 247–275 | DOI | DOI | MR | Zbl
[25] A. L. Yakymiv, “A generalization of the Curtiss theorem for moment generating functions”, Math. Notes, 90:6 (2011), 920–924 | DOI | DOI | MR | Zbl
[26] A. L. Yakymiv, “On a number of components in a random $A$-mapping”, Theory Probab. Appl., 59:1 (2015), 114–127 | DOI | DOI | MR | Zbl
[27] A. L. Yakymiv, “A Tauberian theorem for multiple power series”, Sb. Math., 207:2 (2016), 286–313 | DOI | DOI | MR | Zbl
[28] A. L. Yakymiv, “On the order of random permutation with cycle weights”, Theory Probab. Appl., 63:2 (2018), 209–226 | DOI | DOI | MR | Zbl
[29] A. L. Yakymiv, “O raspredelenii tipa kratnogo stepennogo ryada, pravilno menyayuschegosya v granichnoi tochke”, Diskret. matem., 30:3 (2018), 141–158 | DOI | MR