Abelian theorem for the regularly varying measure and its density in orthant
Teoriâ veroâtnostej i ee primeneniâ, Tome 64 (2019) no. 3, pp. 481-501 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper is concerned with a $\sigma$-finite measure $U$ concentrated in the positive orthant $\mathbf{R}^n_+=[0,\infty)^n$ such that there exists the Laplace transform $\widetilde{U}(\lambda)$ for $\lambda\in\operatorname{int} \mathbf{R}^n_+$. Let functions $R(t)>0$ and $b(t)=(b_1(t),\dots,b_n(t))\in\operatorname{int}\mathbf{R}^n_+$ for $t\geq0$ be such that $R(t)\to\infty$, $b_i(t)\to\infty$ for any $i=1,\dots,n$. Under certain assumptions on these functions, the weak convergence of the measures $U(b(t)\,{\cdot}\,)/R(t)$ to $\Phi{(\,\cdot\,)}$ as $t\to\infty$ is shown to imply the convergence $\widetilde{U}(\lambda/b(t))\to\widetilde{\Phi}(\lambda)<\infty$ for any $\lambda\in\operatorname{int} \mathbf{R}^n_+$ ($t\to\infty$) (the multiplication and division of vectors are defined componentwise). A function $f\colon \mathbf{R}_+^n\to \mathbf{R}_+$ is said to be regularly varying at infinity in $\mathbf{R}_+^n$ along $b(t)$ if $f(b(t)x(t))/f(b(t))\to\varphi(x)\in(0,\infty)$ as $t\to\infty$ for all $x$, $x(t) \in \mathbf{R}_+^n\setminus\{0\}$ such that $ x(t)\to x$. Sufficient conditions are given for such functions to give $\widehat{f}(\lambda/b(t))\equiv\widetilde{U}(\lambda/b(t)) \to\widehat{\phi}(\lambda)\equiv\widetilde{\Phi}(\lambda)<\infty$ for any $\lambda\in\operatorname{int} \mathbf{R}^n_+$\enskip ($t\to\infty$) for $U(dx)=f(x)\,dx$, $\Phi(dx)=\varphi(x)\,dx$. The Abelian theorem obtained here is applied at the end of the paper to investigate the limit behavior of multiple power series distributions.
Keywords: weak convergence of sequence of measures, Abelian theorem for a measure and its density, regularly varying functions and measures at infinity in an orthant, integral representation theorem, multiple power series distributions.
@article{TVP_2019_64_3_a3,
     author = {A. L. Yakymiv},
     title = {Abelian theorem for the regularly varying measure and its density in orthant},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {481--501},
     year = {2019},
     volume = {64},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2019_64_3_a3/}
}
TY  - JOUR
AU  - A. L. Yakymiv
TI  - Abelian theorem for the regularly varying measure and its density in orthant
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2019
SP  - 481
EP  - 501
VL  - 64
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TVP_2019_64_3_a3/
LA  - ru
ID  - TVP_2019_64_3_a3
ER  - 
%0 Journal Article
%A A. L. Yakymiv
%T Abelian theorem for the regularly varying measure and its density in orthant
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2019
%P 481-501
%V 64
%N 3
%U http://geodesic.mathdoc.fr/item/TVP_2019_64_3_a3/
%G ru
%F TVP_2019_64_3_a3
A. L. Yakymiv. Abelian theorem for the regularly varying measure and its density in orthant. Teoriâ veroâtnostej i ee primeneniâ, Tome 64 (2019) no. 3, pp. 481-501. http://geodesic.mathdoc.fr/item/TVP_2019_64_3_a3/

[1] N. H. Abel, “Untersuchungen über die Reihe: $1+\frac{m}{1}x+\frac{m\cdot(m-1)}{1\cdot2}\cdot x^2+\frac{m\cdot(m-1)\cdot(m-2)}{1\cdot2\cdot3}\cdot x^3+\dots\,\mathrm{u.s.w.}$”, J. Reine Angew. Math., 1 (1826), 311–339 | DOI | MR | Zbl

[2] N. H. Bingham, C. M. Goldie, J. L. Teugels, Regular variation, Encyclopedia Math. Appl., 27, Cambridge Univ. Press, Cambridge, 1987, xx+491 pp. | DOI | MR | Zbl

[3] Yu. N. Drozhzhinov, B. I. Zav'yalov, “Multidimensional Abelian and Tauberian comparison theorems”, Math. USSR-Sb., 68:1 (1991), 85–110 | DOI | MR | Zbl

[4] Yu. N. Drozhzhinov, “Multidimensional Tauberian theorems for generalized functions”, Russian Math. Surveys, 71:6 (2016), 1081–1134 | DOI | DOI | MR | Zbl

[5] N. L. Johnson, S. Kotz, A. W. Kemp, Univariate discrete distributions, Wiley Ser. Probab. Math. Statist. Appl. Probab. Statist., 2nd ed., John Wiley Sons, Inc., New York, 1992, xxii+565 pp. | MR | Zbl

[6] S. Kotz, N. Balakrishnan, N. L. Johnson, Continuous multivariate distributions, v. 1, Wiley Ser. Probab. Statist. Appl. Probab. Statist., Models and applications, 2nd ed., Wiley-Interscience, New York, 2000, xxii+722 pp. | DOI | MR | Zbl

[7] N. L. Johnson, S. Kotz, N. Balakrishnan, Discrete multivariate distributions, Wiley Ser. Probab. Statist. Appl. Probab. Statist., John Wiley Sons, Inc., New York, 1997, xxii+299 pp. | MR | Zbl

[8] V. M. Zolotarev, “On the asymptotic behavior of a class of infinitely divisible laws”, Theory Probab. Appl., 6:3 (1961), 304–307 | DOI | MR | Zbl

[9] V. F. Kolchin, “A certain class of limit theorems for conditional distributions”, Selected translations in mathematical statistics and probability, 11, Amer. Math. Soc., Providence, RI, 1973, 185–197 | MR | MR | Zbl | Zbl

[10] V. F. Kolchin, Random mappings, Transl. Ser. Math. Engrg., Optimization Software, Inc., Publications Division, New York, 1986, xiv+207 pp. | MR | MR | Zbl | Zbl

[11] V. F. Kolchin, Random graphs, Encyclopedia Math. Appl., 53, Cambridge Univ. Press, Cambridge, 1999, xii+252 pp. | MR | MR | Zbl | Zbl

[12] A. Noack, “A class of random variables with discrete distributions”, Ann. Math. Statistics, 21 (1950), 127–132 | DOI | MR | Zbl

[13] E. Omey, Multivariate regular variation and application in probability theory, Eclectica, 74, EHSAL, Brussel, Belgium, 1989, 59 pp.

[14] Yu. L. Pavlov, Random forests, VSP, Utrecht, 2000, 122 pp.

[15] A. G. Postnikov, “Tauberian theory and its applications”, Proc. Steklov Inst. Math., 144 (1980), 1–138 | MR | Zbl

[16] E. Seneta, Regularly varying functions, Lecture Notes in Math., 508, Springer-Verlag, Berlin–New York, 1976, v+112 pp. | DOI | MR | MR | Zbl | Zbl

[17] A. Tauber, “Ein Satz aus der Theorie der unendlichen Reihen”, Monatsh. Math. Phys., 8:1 (1897), 273–277 | DOI | MR | Zbl

[18] A. N. Timashev, Raspredeleniya tipa stepennogo ryada i obobschennaya skhema razmescheniya, Akademiya, M., 2016, 167 pp.

[19] A. N. Timashev, Sluchainye komponenty v obobschennoi skheme razmescheniya, Akademiya, M., 2017, 119 pp.

[20] A. N. Timashev, “Limit theorems for power-series distributions with finite radius of convergence”, Theory Probab. Appl., 63:1 (2018), 45–56 | DOI | DOI | MR | Zbl

[21] A. L. Jakymiv, “Multidimensional Tauberian theorems and their application to Bellman–Harris branching processes”, Math. USSR-Sb., 43:3 (1982), 413–425 | DOI | MR | Zbl

[22] A. L. Yakimiv, Probabilistic applications of Tauberian theorems, Mod. Probab. Stat., VSP, Leiden, 2005, viii+225 pp. | DOI | MR | Zbl | Zbl

[23] A. L. Yakymiv, “Limit theorem for the middle members of ordered cycle lengths in random $A$-permutations”, Theory Probab. Appl., 54:1 (2010), 114–128 | DOI | DOI | MR | Zbl

[24] A. L. Yakymiv, “A limit theorem for the logarithm of the order of a random $A$-permutation”, Discrete Math. Appl., 20:3 (2010), 247–275 | DOI | DOI | MR | Zbl

[25] A. L. Yakymiv, “A generalization of the Curtiss theorem for moment generating functions”, Math. Notes, 90:6 (2011), 920–924 | DOI | DOI | MR | Zbl

[26] A. L. Yakymiv, “On a number of components in a random $A$-mapping”, Theory Probab. Appl., 59:1 (2015), 114–127 | DOI | DOI | MR | Zbl

[27] A. L. Yakymiv, “A Tauberian theorem for multiple power series”, Sb. Math., 207:2 (2016), 286–313 | DOI | DOI | MR | Zbl

[28] A. L. Yakymiv, “On the order of random permutation with cycle weights”, Theory Probab. Appl., 63:2 (2018), 209–226 | DOI | DOI | MR | Zbl

[29] A. L. Yakymiv, “O raspredelenii tipa kratnogo stepennogo ryada, pravilno menyayuschegosya v granichnoi tochke”, Diskret. matem., 30:3 (2018), 141–158 | DOI | MR