Mots-clés : multiple sources
@article{TVP_2019_64_3_a2,
author = {I. Khristolyubov and E. B. Yarovaya},
title = {A limit theorem for supercritical random branching walks with branching sources of varying intensity},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {456--480},
year = {2019},
volume = {64},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2019_64_3_a2/}
}
TY - JOUR AU - I. Khristolyubov AU - E. B. Yarovaya TI - A limit theorem for supercritical random branching walks with branching sources of varying intensity JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2019 SP - 456 EP - 480 VL - 64 IS - 3 UR - http://geodesic.mathdoc.fr/item/TVP_2019_64_3_a2/ LA - ru ID - TVP_2019_64_3_a2 ER -
%0 Journal Article %A I. Khristolyubov %A E. B. Yarovaya %T A limit theorem for supercritical random branching walks with branching sources of varying intensity %J Teoriâ veroâtnostej i ee primeneniâ %D 2019 %P 456-480 %V 64 %N 3 %U http://geodesic.mathdoc.fr/item/TVP_2019_64_3_a2/ %G ru %F TVP_2019_64_3_a2
I. Khristolyubov; E. B. Yarovaya. A limit theorem for supercritical random branching walks with branching sources of varying intensity. Teoriâ veroâtnostej i ee primeneniâ, Tome 64 (2019) no. 3, pp. 456-480. http://geodesic.mathdoc.fr/item/TVP_2019_64_3_a2/
[1] K. B. Athreya, P. E. Ney, Branching processes, Grundlehren Math. Wiss., 196, Springer-Verlag, New York–Heidelberg, 1972, xi+287 pp. | MR | Zbl
[2] L. V. Bogachev, E. B. Yarovaya, “A limit theorem for a supercritical branching random walk on $\mathbb Z^d$ with a single source”, Russian Math. Surveys, 53:5 (1998), 1086–1088 | DOI | DOI | MR | Zbl
[3] I. I. Gihman, A. V. Skorohod, The theory of stochastic processes, v. II, Grundlehren Math. Wiss., 218, Springer-Verlag, New York–Heidelberg, 1975, vii+441 pp. | MR | MR | Zbl | Zbl
[4] R. A. Horn, C. R. Johnson, Matrix analysis, Cambridge Univ. Press, Cambridge, 1985, xiii+561 pp. | DOI | MR | MR | Zbl | Zbl
[5] T. Kato, Perturbation theory for linear operators, Grundlehren Math. Wiss., 132, Springer-Verlag New York, Inc., New York, 1966, xix+592 pp. | MR | MR | Zbl | Zbl
[6] B. A. Sewastjanow, Verzweigungsprozesse, Math. Lehrbücher Monogr. II. Abt. Math. Monogr., 34, Akademie-Verlag, Berlin, 1974, xi+326 pp. | MR | MR | Zbl | Zbl
[7] J. Shohat, J. D. Tamarkin, The problem of moments, Amer. Math. Soc. Math. Surv., 1, Amer. Math. Soc., New York, 1943, xiv+140 pp. | MR | Zbl
[8] E. B. Yarovaya, Vetvyaschiesya sluchainye bluzhdaniya v neodnorodnoi srede, Izd-vo TsPI pri mekh.-matem. f-te MGU, M., 2007, 104 pp.
[9] E. B. Yarovaya, “Spectral properties of evolutionary operators in branching random walk models”, Math. Notes, 92:1 (2012), 115–131 | DOI | DOI | MR | Zbl
[10] E. B. Yarovaya, “Branching random walks with several sources”, Math. Popul. Stud., 20:1 (2013), 14–26 | DOI | MR | Zbl
[11] E. B. Yarovaya, “Spectral asymptotics of a supercritical branching random walk”, Theory Probab. Appl., 62:3 (2018), 413–431 | DOI | DOI | MR | Zbl
[12] E. Yarovaya, “Positive discrete spectrum of the evolutionary operator of supercritical branching walks with heavy tails”, Methodol. Comput. Appl. Probab., 19:4 (2017), 1151–1167 | DOI | MR | Zbl