A limit theorem for supercritical random branching walks with branching sources of varying intensity
Teoriâ veroâtnostej i ee primeneniâ, Tome 64 (2019) no. 3, pp. 456-480 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a supercritical symmetric continuous-time branching random walk on a multidimensional lattice with a finite number of particle generation sources of varying positive intensities without any restrictions on the variance of jumps of the underlying random walk. It is assumed that the spectrum of the evolution operator contains at least one positive eigenvalue. We prove that under these conditions the largest eigenvalue of the evolution operator is simple and determines the rate of exponential growth of particle quantities at each point on the lattice as well as on the lattice as a whole.
Keywords: branching random walk, supercritical case, limit theorem, particle number exponential growth.
Mots-clés : multiple sources
@article{TVP_2019_64_3_a2,
     author = {I. Khristolyubov and E. B. Yarovaya},
     title = {A limit theorem for supercritical random branching walks with branching sources of varying intensity},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {456--480},
     year = {2019},
     volume = {64},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2019_64_3_a2/}
}
TY  - JOUR
AU  - I. Khristolyubov
AU  - E. B. Yarovaya
TI  - A limit theorem for supercritical random branching walks with branching sources of varying intensity
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2019
SP  - 456
EP  - 480
VL  - 64
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TVP_2019_64_3_a2/
LA  - ru
ID  - TVP_2019_64_3_a2
ER  - 
%0 Journal Article
%A I. Khristolyubov
%A E. B. Yarovaya
%T A limit theorem for supercritical random branching walks with branching sources of varying intensity
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2019
%P 456-480
%V 64
%N 3
%U http://geodesic.mathdoc.fr/item/TVP_2019_64_3_a2/
%G ru
%F TVP_2019_64_3_a2
I. Khristolyubov; E. B. Yarovaya. A limit theorem for supercritical random branching walks with branching sources of varying intensity. Teoriâ veroâtnostej i ee primeneniâ, Tome 64 (2019) no. 3, pp. 456-480. http://geodesic.mathdoc.fr/item/TVP_2019_64_3_a2/

[1] K. B. Athreya, P. E. Ney, Branching processes, Grundlehren Math. Wiss., 196, Springer-Verlag, New York–Heidelberg, 1972, xi+287 pp. | MR | Zbl

[2] L. V. Bogachev, E. B. Yarovaya, “A limit theorem for a supercritical branching random walk on $\mathbb Z^d$ with a single source”, Russian Math. Surveys, 53:5 (1998), 1086–1088 | DOI | DOI | MR | Zbl

[3] I. I. Gihman, A. V. Skorohod, The theory of stochastic processes, v. II, Grundlehren Math. Wiss., 218, Springer-Verlag, New York–Heidelberg, 1975, vii+441 pp. | MR | MR | Zbl | Zbl

[4] R. A. Horn, C. R. Johnson, Matrix analysis, Cambridge Univ. Press, Cambridge, 1985, xiii+561 pp. | DOI | MR | MR | Zbl | Zbl

[5] T. Kato, Perturbation theory for linear operators, Grundlehren Math. Wiss., 132, Springer-Verlag New York, Inc., New York, 1966, xix+592 pp. | MR | MR | Zbl | Zbl

[6] B. A. Sewastjanow, Verzweigungsprozesse, Math. Lehrbücher Monogr. II. Abt. Math. Monogr., 34, Akademie-Verlag, Berlin, 1974, xi+326 pp. | MR | MR | Zbl | Zbl

[7] J. Shohat, J. D. Tamarkin, The problem of moments, Amer. Math. Soc. Math. Surv., 1, Amer. Math. Soc., New York, 1943, xiv+140 pp. | MR | Zbl

[8] E. B. Yarovaya, Vetvyaschiesya sluchainye bluzhdaniya v neodnorodnoi srede, Izd-vo TsPI pri mekh.-matem. f-te MGU, M., 2007, 104 pp.

[9] E. B. Yarovaya, “Spectral properties of evolutionary operators in branching random walk models”, Math. Notes, 92:1 (2012), 115–131 | DOI | DOI | MR | Zbl

[10] E. B. Yarovaya, “Branching random walks with several sources”, Math. Popul. Stud., 20:1 (2013), 14–26 | DOI | MR | Zbl

[11] E. B. Yarovaya, “Spectral asymptotics of a supercritical branching random walk”, Theory Probab. Appl., 62:3 (2018), 413–431 | DOI | DOI | MR | Zbl

[12] E. Yarovaya, “Positive discrete spectrum of the evolutionary operator of supercritical branching walks with heavy tails”, Methodol. Comput. Appl. Probab., 19:4 (2017), 1151–1167 | DOI | MR | Zbl