Mots-clés : persistence
@article{TVP_2019_64_3_a12,
author = {F. Aurzada and M. A. Lifshits},
title = {The first exit time of fractional {Brownian} motion from a~parabolic domain},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {610--620},
year = {2019},
volume = {64},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2019_64_3_a12/}
}
TY - JOUR AU - F. Aurzada AU - M. A. Lifshits TI - The first exit time of fractional Brownian motion from a parabolic domain JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2019 SP - 610 EP - 620 VL - 64 IS - 3 UR - http://geodesic.mathdoc.fr/item/TVP_2019_64_3_a12/ LA - ru ID - TVP_2019_64_3_a12 ER -
F. Aurzada; M. A. Lifshits. The first exit time of fractional Brownian motion from a parabolic domain. Teoriâ veroâtnostej i ee primeneniâ, Tome 64 (2019) no. 3, pp. 610-620. http://geodesic.mathdoc.fr/item/TVP_2019_64_3_a12/
[1] F. Aurzada, S. Dereich, “Universality of the asymptotics of the one-sided exit problem for integrated processes”, Ann. Inst. H. Poincaré Probab. Stat., 49:1 (2013), 236–251 | DOI | MR | Zbl
[2] R. Bañuelos, K. Bogdan, “Symmetric stable processes in cones”, Potential Anal., 21:3 (2004), 263–288 | DOI | MR | Zbl
[3] R. Bañuelos, K. Bogdan, “Symmetric stable processes in parabola-shaped regions”, Proc. Amer. Math. Soc., 133:12 (2005), 3581–3587 | DOI | MR | Zbl
[4] R. Bañuelos, R. D. DeBlassie, R. Smits, “The first exit time of planar Brownian motion from the interior of a parabola”, Ann. Probab., 29:2 (2001), 882–901 | DOI | MR | Zbl
[5] R. Bañuelos, R. G. Smits, “Brownian motion in cones”, Probab. Theory Related Fields, 108:3 (1997), 299–319 | DOI | MR | Zbl
[6] R. D. DeBlassie, “Exit times from cones in {$\mathbb{R}^n$} of Brownian motion”, Probab. Theory Related Fields, 74:1 (1987), 1–29 | DOI | MR | Zbl
[7] R. D. DeBlassie, “Remark on: "Exit times from cones in {$\mathbb{R}^n$} of Brownian motion" [Prob. Th. Rel. Fields 74 (1987), No 1, 1–29]”, Probab. Theory Related Fields, 79:1 (1988), 95–97 | DOI | MR
[8] A. Dembo, O. Zeitouni, Large deviations techniques and applications, Stoch. Model. Appl. Probab., 38, corr. reprint of the 2nd ed., Springer-Verlag, Berlin, 2010, xvi+396 pp. | DOI | MR | Zbl
[9] F. den Hollander, Large deviations, Fields Inst. Monogr., 14, Amer. Math. Soc., Providence, RI, 2000, x+143 pp. | MR | Zbl
[10] W. V. Li, “The first exit time of a Brownian motion from an unbounded convex domain”, Ann. Probab., 31:2 (2003), 1078–1096 | DOI | MR | Zbl
[11] W. V. Li, W. Linde, “Existence of small ball constants for fractional Brownian motions”, C. R. Acad. Sci. Paris Sér. I Math., 326:11 (1998), 1329–1334 | DOI | MR | Zbl
[12] M. A. Lifshits, Gaussian random functions, Math. Appl., 322, Kluwer Acad. Publ., Dordrecht, 1995, xii+333 pp. | DOI | MR | Zbl | Zbl
[13] M. A. Lifshits, W. Linde, “Small deviations of weighted fractional processes and average non-linear approximation”, Trans. Amer. Math. Soc., 357:5 (2005), 2059–2079 | DOI | MR | Zbl
[14] M. Lifshits, Z. Shi, “The first exit time of Brownian motion from a parabolic domain”, Bernoulli, 8:6 (2002), 745–765 | MR | Zbl
[15] M. Lifshits, T. Simon, “Small deviations for fractional stable processes”, Ann. Inst. H. Poincaré Probab. Statist., 41:4 (2005), 725–752 | DOI | MR | Zbl
[16] G. M. Molchan, “Maximum of a fractional Brownian motion: probabilities of small values”, Comm. Math. Phys., 205:1 (1999), 97–111 | DOI | MR | Zbl
[17] E. Nane, “Iterated Brownian motion in parabola-shaped domains”, Potential Anal., 24:2 (2006), 105–123 | DOI | MR | Zbl
[18] F. Spitzer, “Some theorems concerning {$2$}-dimensional Brownian motion”, Trans. Amer. Math. Soc., 87 (1958), 187–197 | DOI | MR | Zbl