Random mappings with component sizes from a given set
Teoriâ veroâtnostej i ee primeneniâ, Tome 64 (2019) no. 3, pp. 599-609 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper is concerned with single-valued mappings from the set of $n$ labeled elements into itself such that the sizes of connected components of the graph corresponding to each mapping lie in a given countable set of positive integers. We find the asymptotic behavior for the number of all such mappings as $n\to\nobreak \infty$. As a conjecture, we formulate sufficient conditions for the convergence of the distribution of the number of components in a random equiprobable mapping of the above form to the normal law (in the local setting). We consider particular cases where this conjecture applies and derive corollaries from it. Conditions are given for the convergence of the distribution of the number of components of a given size to a Poisson distribution law.
Keywords: random mappings, components, saddle-point method, power series, asymptotic density.
Mots-clés : Poisson distribution
@article{TVP_2019_64_3_a11,
     author = {A. N. Timashev},
     title = {Random mappings with component sizes from a given set},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {599--609},
     year = {2019},
     volume = {64},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2019_64_3_a11/}
}
TY  - JOUR
AU  - A. N. Timashev
TI  - Random mappings with component sizes from a given set
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2019
SP  - 599
EP  - 609
VL  - 64
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TVP_2019_64_3_a11/
LA  - ru
ID  - TVP_2019_64_3_a11
ER  - 
%0 Journal Article
%A A. N. Timashev
%T Random mappings with component sizes from a given set
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2019
%P 599-609
%V 64
%N 3
%U http://geodesic.mathdoc.fr/item/TVP_2019_64_3_a11/
%G ru
%F TVP_2019_64_3_a11
A. N. Timashev. Random mappings with component sizes from a given set. Teoriâ veroâtnostej i ee primeneniâ, Tome 64 (2019) no. 3, pp. 599-609. http://geodesic.mathdoc.fr/item/TVP_2019_64_3_a11/

[1] A. N. Timashev, Asimptoticheskie razlozheniya v veroyatnostnoi kombinatorike, TVP, M., 2011, 312 pp.

[2] B. Harris, “Probability distributions related to random mappings”, Ann. Math. Statist., 31:4 (1960), 1045–1062 | DOI | MR | Zbl

[3] V. F. Kolchin, Random mappings, Transl. Ser. Math. Engrg., Optimization Software, Inc., Publications Division, New York, 1986, xiv+207 pp. | MR | MR | Zbl | Zbl

[4] A. N. Timashev, “Predelnyi zakon Puassona dlya raspredeleniya chisla komponent v obobschennoi skheme razmescheniya”, Diskret. matem., 29:4 (2017), 143–157 | DOI | MR

[5] A. N. Timashev, Additivnye zadachi s ogranicheniyami na znacheniya slagaemykh, Akademiya, M., 2015, 183 pp.

[6] A. L. Yakymiv, “On the number of cyclic points of random $A$-mapping”, Discrete Math. Appl., 23:5-6 (2013), 503–515 | DOI | DOI | MR | Zbl

[7] V. N. Sachkov, Probabilistic methods in combinatorial analysis, Encyclopedia Math. Appl., 56, Cambridge Univ. Press, Cambridge, 1997, x+246 pp. | DOI | MR | MR | Zbl | Zbl