On optimal upper bound on the tail probability for sums of random variables
Teoriâ veroâtnostej i ee primeneniâ, Tome 64 (2019) no. 3, pp. 590-598
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $s$ be any given real number. An explicit construction is provided of random variables (r.v.'s) $X$ and $Y$ such that $\sup\mathbf{P}(X+Y\ge s)$ is attained, where the $\sup$ is taken over all r.v.'s $X$ and $Y$ with given distributions.
Keywords:
sums of random variables, tails of distributions, probability inequalities, extremal problems.
@article{TVP_2019_64_3_a10,
author = {I. Pinelis},
title = {On optimal upper bound on the tail probability for sums of random variables},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {590--598},
year = {2019},
volume = {64},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2019_64_3_a10/}
}
I. Pinelis. On optimal upper bound on the tail probability for sums of random variables. Teoriâ veroâtnostej i ee primeneniâ, Tome 64 (2019) no. 3, pp. 590-598. http://geodesic.mathdoc.fr/item/TVP_2019_64_3_a10/
[1] J. H. B. Kemperman, “On the role of duality in the theory of moments”, Semi-infinite programming and applications (Austin, TX, 1981), Lecture Notes in Econom. and Math. Systems, 215, Springer, Berlin–New York, 1983, 63–92 | DOI | MR | Zbl
[2] V. Strassen, “The existence of probability measures with given marginals”, Ann. Math. Statist., 36:2 (1965), 423–439 | DOI | MR | Zbl