On optimal upper bound on the tail probability for sums of random variables
Teoriâ veroâtnostej i ee primeneniâ, Tome 64 (2019) no. 3, pp. 590-598
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $s$ be any given real number. An explicit construction is provided of
random variables (r.v.'s) $X$ and $Y$ such that $\sup\mathbf{P}(X+Y\ge s)$ is
attained, where the $\sup$ is taken over all r.v.'s $X$ and $Y$ with given
distributions.
Keywords:
sums of random variables, tails of distributions, probability inequalities, extremal problems.
@article{TVP_2019_64_3_a10,
author = {I. Pinelis},
title = {On optimal upper bound on the tail probability for sums of random variables},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {590--598},
publisher = {mathdoc},
volume = {64},
number = {3},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2019_64_3_a10/}
}
I. Pinelis. On optimal upper bound on the tail probability for sums of random variables. Teoriâ veroâtnostej i ee primeneniâ, Tome 64 (2019) no. 3, pp. 590-598. http://geodesic.mathdoc.fr/item/TVP_2019_64_3_a10/