On optimal upper bound on the tail probability for sums of random variables
Teoriâ veroâtnostej i ee primeneniâ, Tome 64 (2019) no. 3, pp. 590-598 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $s$ be any given real number. An explicit construction is provided of random variables (r.v.'s) $X$ and $Y$ such that $\sup\mathbf{P}(X+Y\ge s)$ is attained, where the $\sup$ is taken over all r.v.'s $X$ and $Y$ with given distributions.
Keywords: sums of random variables, tails of distributions, probability inequalities, extremal problems.
@article{TVP_2019_64_3_a10,
     author = {I. Pinelis},
     title = {On optimal upper bound on the tail probability for sums of random variables},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {590--598},
     year = {2019},
     volume = {64},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2019_64_3_a10/}
}
TY  - JOUR
AU  - I. Pinelis
TI  - On optimal upper bound on the tail probability for sums of random variables
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2019
SP  - 590
EP  - 598
VL  - 64
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TVP_2019_64_3_a10/
LA  - ru
ID  - TVP_2019_64_3_a10
ER  - 
%0 Journal Article
%A I. Pinelis
%T On optimal upper bound on the tail probability for sums of random variables
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2019
%P 590-598
%V 64
%N 3
%U http://geodesic.mathdoc.fr/item/TVP_2019_64_3_a10/
%G ru
%F TVP_2019_64_3_a10
I. Pinelis. On optimal upper bound on the tail probability for sums of random variables. Teoriâ veroâtnostej i ee primeneniâ, Tome 64 (2019) no. 3, pp. 590-598. http://geodesic.mathdoc.fr/item/TVP_2019_64_3_a10/

[1] J. H. B. Kemperman, “On the role of duality in the theory of moments”, Semi-infinite programming and applications (Austin, TX, 1981), Lecture Notes in Econom. and Math. Systems, 215, Springer, Berlin–New York, 1983, 63–92 | DOI | MR | Zbl

[2] V. Strassen, “The existence of probability measures with given marginals”, Ann. Math. Statist., 36:2 (1965), 423–439 | DOI | MR | Zbl