Reflecting Lévy processes and associated families of linear operators
Teoriâ veroâtnostej i ee primeneniâ, Tome 64 (2019) no. 3, pp. 417-441 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper is concerned with special one-dimensional Markov processes, which are Lévy processes defined on a finite interval and reflected from the boundary points of the interval. It is shown that in this setting, in addition to the standard semigroup of operators generated by the Markov process, there also appears the family of “boundary” random operators that send functions defined on the boundary of the interval to elements of the space $L_2$ on the entire interval. In the case when the original process is a Wiener process, we show that these operators can be expressed in terms of the local time of the process on the boundary of the interval.
Keywords: random process, initial boundary value problem, limit theorem, local time.
@article{TVP_2019_64_3_a0,
     author = {I. A. Ibragimov and N. V. Smorodina and M. M. Faddeev},
     title = {Reflecting {L\'evy} processes and associated families of linear operators},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {417--441},
     year = {2019},
     volume = {64},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2019_64_3_a0/}
}
TY  - JOUR
AU  - I. A. Ibragimov
AU  - N. V. Smorodina
AU  - M. M. Faddeev
TI  - Reflecting Lévy processes and associated families of linear operators
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2019
SP  - 417
EP  - 441
VL  - 64
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TVP_2019_64_3_a0/
LA  - ru
ID  - TVP_2019_64_3_a0
ER  - 
%0 Journal Article
%A I. A. Ibragimov
%A N. V. Smorodina
%A M. M. Faddeev
%T Reflecting Lévy processes and associated families of linear operators
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2019
%P 417-441
%V 64
%N 3
%U http://geodesic.mathdoc.fr/item/TVP_2019_64_3_a0/
%G ru
%F TVP_2019_64_3_a0
I. A. Ibragimov; N. V. Smorodina; M. M. Faddeev. Reflecting Lévy processes and associated families of linear operators. Teoriâ veroâtnostej i ee primeneniâ, Tome 64 (2019) no. 3, pp. 417-441. http://geodesic.mathdoc.fr/item/TVP_2019_64_3_a0/

[1] A. V. Skorokhod, “Stochastic equations for diffusion processes in a bounded region”, Theory Probab. Appl., 6:3 (1961), 264–274 | DOI | MR | Zbl

[2] A. Pilipenko, An introduction to stochastic differential equations with reflection, Lect. Pure Appl. Math., 1, Potsdam Univ. Press, Potsdam, 2014, ix+75 pp. | Zbl

[3] I. A. Ibragimov, N. V. Smorodina, M. M. Faddeev, “Initial-boundary value problems in a bounded domain: probabilistic representations of solutions and limit theorems. I”, Theory Probab. Appl., 61:4 (2017), 632–648 | DOI | DOI | MR | Zbl

[4] I. A. Ibragimov, N. V. Smorodina, M. M. Faddeev, “Initial-boundary value problems in a bounded domain: probabilistic representations of solutions and limit theorems. II”, Theory Probab. Appl., 62:3 (2018), 356–372 | DOI | DOI | MR | Zbl

[5] K. Sato, H. Tanaka, “Local times on the boundary for multi-dimensional reflecting diffusion”, Proc. Japan Acad., 38:10 (1962), 699–702 | DOI | MR | Zbl

[6] K. Itô, H. P. McKean, Jr., Diffusion processes and their sample paths, Grundlehren Math. Wiss., 125, Academic Press, Inc., Publishers, New York; Springer-Verlag, Berlin–New York, 1965, xvii+321 pp. | MR | Zbl | Zbl