Mots-clés : Cramér condition
@article{TVP_2019_64_2_a8,
author = {A. A. Borovkov},
title = {Moderately large deviation principles for trajectories of compound renewal processes},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {399--411},
year = {2019},
volume = {64},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2019_64_2_a8/}
}
A. A. Borovkov. Moderately large deviation principles for trajectories of compound renewal processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 64 (2019) no. 2, pp. 399-411. http://geodesic.mathdoc.fr/item/TVP_2019_64_2_a8/
[1] A. A. Borovkov, K. A. Borovkov, Asymptotic analysis of random walks. Heavy-tailed distributions, Encyclopedia Math. Appl., Cambridge Univ. Press, Cambridge, 118, xxx+625 pp. | DOI | MR | Zbl
[2] A. A. Borovkov, Asimptoticheskii analiz sluchainykh bluzhdanii. Bystro ubyvayuschie raspredeleniya priraschenii, Fizmatlit, M., 2013, 447 pp. | Zbl
[3] A. A. Borovkov, A. A. Mogul'skii, “Integro-local and integral theorems for sums of random variables with semiexponential distributions”, Siberian Math. J., 47:6 (2006), 990–1026 | DOI | MR | Zbl
[4] A. V. Nagaev, “Cramer large deviations when the extreme conjugate distribution is heavy-tailed”, Theory Probab. Appl., 43:3 (1999), 405–421 | DOI | DOI | MR | Zbl
[5] L. V. Rozovskii, “Estimate from below for large-deviation probabilities of a sum of independent random variables with finite variances”, J. Math. Sci. (N. Y.), 109:6 (2002), 2192–2209 | DOI | MR | Zbl
[6] L. Saulis, V. A. Statulevičius, Limit theorems for large deviations, Math. Appl. (Soviet Ser.), 73, Kluwer Acad. Publ., Dordrecht, 1991, viii+232 pp. | DOI | MR | MR | Zbl | Zbl
[7] S. G. Tkachuk, “Lokalnye predelnye teoremy, dopuskayuschie bolshie ukloneniya, v sluchae ustoichivykh predelnykh zakonov”, Izv. AN UzSSR. Ser. fiz.-matem. nauk, 17:2 (1973), 30–33 | MR | Zbl
[8] A. Ya. Khinchin, “Dve teoremy o stokhasticheskikh protsessakh s odnotipnymi prirascheniyami”, Matem. sb., 3(45):3 (1938), 577–584 | Zbl
[9] A. Araujo, E. Giné, The central limit theorem for real and Banach valued random variables, Wiley Ser. Probab. Math. Statist., John Wiley Sons, New York–Chichester–Brisbane, 1980, xiv+233 pp. | MR | Zbl
[10] R. A. Doney, “A large deviation local limit theorem”, Math. Proc. Cambridge Philos. Soc., 105:3 (1989), 575–577 | DOI | MR | Zbl
[11] N. H. Bingham, C. M. Goldie, J. L. Teugels, Regular variation, Encyclopedia Math. Appl., 27, Cambridge Univ. Press, Cambridge, 1987, xx+491 pp. | DOI | MR | Zbl
[12] A. Gut, Stopped random walks. Limit theorems and applications, Springer Ser. Oper. Res. Financ. Eng., 2nd ed., Springer, New York, 2009, xiv+263 pp. | DOI | MR | Zbl
[13] J. Steinebach, “Invariance principles for renewal processes when only moments of low order exist”, J. Multivariate Anal., 26:2 (1988), 166–183 | DOI | MR | Zbl