Moderately large deviation principles for trajectories of compound renewal processes
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 64 (2019) no. 2, pp. 399-411
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Moderate large deviations principles for trajectories of compound renewal
processes are put forward assuming that
either the Cramér condition is satisfied or weaker moment conditions are satisfied.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
compound renewal processes, moderate large deviations principle, Cramér condition, crude (logarithmic) invariance principle.
                    
                  
                
                
                @article{TVP_2019_64_2_a8,
     author = {A. A. Borovkov},
     title = {Moderately large deviation principles for trajectories of compound renewal processes},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {399--411},
     publisher = {mathdoc},
     volume = {64},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2019_64_2_a8/}
}
                      
                      
                    TY - JOUR AU - A. A. Borovkov TI - Moderately large deviation principles for trajectories of compound renewal processes JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2019 SP - 399 EP - 411 VL - 64 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_2019_64_2_a8/ LA - ru ID - TVP_2019_64_2_a8 ER -
A. A. Borovkov. Moderately large deviation principles for trajectories of compound renewal processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 64 (2019) no. 2, pp. 399-411. http://geodesic.mathdoc.fr/item/TVP_2019_64_2_a8/
