An extended continous mapping theorem for outer almost sure weak convergence
Teoriâ veroâtnostej i ee primeneniâ, Tome 64 (2019) no. 2, pp. 375-398 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We prove an extended continuous mapping theorem for outer almost sure weak convergence in a metric space, a notion that is used in bootstrap empirical processes theory. Then we make use of those results to establish the consistency of several bootstrap procedures in empirical likelihood theory for functional parameters.
Keywords: bootstrap, empirical measure, limit theorems.
@article{TVP_2019_64_2_a7,
     author = {D. Varron},
     title = {An extended continous mapping theorem for outer almost sure weak convergence},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {375--398},
     year = {2019},
     volume = {64},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2019_64_2_a7/}
}
TY  - JOUR
AU  - D. Varron
TI  - An extended continous mapping theorem for outer almost sure weak convergence
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2019
SP  - 375
EP  - 398
VL  - 64
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_2019_64_2_a7/
LA  - ru
ID  - TVP_2019_64_2_a7
ER  - 
%0 Journal Article
%A D. Varron
%T An extended continous mapping theorem for outer almost sure weak convergence
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2019
%P 375-398
%V 64
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_2019_64_2_a7/
%G ru
%F TVP_2019_64_2_a7
D. Varron. An extended continous mapping theorem for outer almost sure weak convergence. Teoriâ veroâtnostej i ee primeneniâ, Tome 64 (2019) no. 2, pp. 375-398. http://geodesic.mathdoc.fr/item/TVP_2019_64_2_a7/

[1] E. Beutner, H. Zähle, “A modified functional delta method and its application to the estimation of risk functionals”, J. Multivariate Anal., 101:10 (2010), 2452–2463 | DOI | MR | Zbl

[2] E. Beutner, H. Zähle, “Deriving the asymptotic distribution of $U$- and $V$-statistics of dependent data using weighted empirical processes”, Bernoulli, 18:3 (2012), 803–822 | DOI | MR | Zbl

[3] E. Beutner, H. Zähle, “Functional delta-method for the bootstrap of quasi-Hadamard differentiable functionals”, Electron. J. Stat., 10:1 (2016), 1181–1222 | DOI | MR | Zbl

[4] P. Billingsley, Convergence of probability measures, John Wiley Sons, Inc., New York–London–Sydney, 1968, xii+253 pp. | MR | Zbl

[5] D. M. Chibisov, “An investigation of the asymptotic power of the tests of fit”, Theory Probab. Appl., 10:3 (1965), 421–437 | DOI | MR | Zbl

[6] B. Efron, “Bootstrap methods: another look at the jackknife”, Ann. Statist., 7:1 (1979), 1–26 | DOI | MR | Zbl

[7] R. D. Gill, “Non- and semi-parametric maximum likelihood estimators and the von Mises method. I”, With a discussion by J. A. Wellner and J. Præstgaard and a reply by the author, Scand. J. Statist., 16:2 (1989), 97–128 | MR | Zbl

[8] E. Gine, “Lectures on some aspects of the bootstrap”, Lectures on probability theory and statistics (Saint-Flour, 1996), Lecture Notes in Math., 1665, Springer, Berlin, 1997, 37–151 | DOI | MR | Zbl

[9] E. Giné, J. Zinn, “Bootstrapping general empirical measures”, Ann. Probab., 18:2 (1990), 851–869 | DOI | MR | Zbl

[10] J. Hoffmann-Jørgensen, Stochastic processes on Polish spaces, Various Publ. Ser. (Aarhus), 39, Aarhus Univ., Mat. Inst., Aarhus, 1991, ii+278 pp. | MR | Zbl

[11] M. Ledoux, M. Talagrand, “Un critère sur les petites boules dans le théorème limite central”, Probab. Theory Related Fields, 77:1 (1988), 29–47 | DOI | MR | Zbl

[12] J. Præstgaard, J. A. Wellner, “Exchangeably weighted bootstraps of the general empirical process”, Ann. Probab., 21:4 (1993), 2053–2086 | DOI | MR | Zbl

[13] Y. V. Prokhorov, “Convergence of random processes and limit theorems in probability theory”, Theory Probab. Appl., 1:2 (1956), 157–214 | DOI | MR | Zbl

[14] A. V. Skorokhod, “Limit theorems for stochastic processes”, Theory Probab. Appl., 1:3 (1956), 261–290 | DOI | MR | Zbl

[15] A. W. van der Vaart, J. A. Wellner, Weak convergence and empirical processes. With applications to statistics, Springer Ser. Statist., Springer-Verlag, New-York, 1996, xvi+508 pp. | DOI | MR | Zbl

[16] D. Varron, “Empirical likelihood confidence tubes for functional parameters in plug-in estimation”, J. Multivariate Anal., 152 (2016), 100–118 | DOI | MR | Zbl