@article{TVP_2019_64_2_a6,
author = {L. A. Sakhanenko},
title = {Testing a~multivariate distribution for generalized skew ellipticity},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {358--374},
year = {2019},
volume = {64},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2019_64_2_a6/}
}
L. A. Sakhanenko. Testing a multivariate distribution for generalized skew ellipticity. Teoriâ veroâtnostej i ee primeneniâ, Tome 64 (2019) no. 2, pp. 358-374. http://geodesic.mathdoc.fr/item/TVP_2019_64_2_a6/
[1] M. G. Genton (ed.), Skew-elliptical distributions and their applications. A journey beyond normality, Chapman Hall/CRC, Boca Raton, FL, 2004, xviii+396 pp. | DOI | MR | Zbl
[2] M. G. Genton, N. M. R. Loperfido, “Generalized skew-elliptical distributions and their quadratic forms”, Ann. Inst. Statist. Math., 57:2 (2005), 389–401 | DOI | MR | Zbl
[3] M. D. Jiménez-Gamero, M. V. Alba-Fernández, P. Jodrá, Y. Chalco-Cano, “Testing for the symmetric component in skew distributions”, Math. Methods Appl. Sci., 39:16 (2016), 4713–4722 | DOI | MR | Zbl
[4] V. Koltchinskii, L. Sakhanenko, “Testing for ellipsoidal symmetry of a multivariate distribution”, High dimensional probability II (Seattle, WA, 1999), Progr. Probab., 47, Birkhäuser Boston, Boston, MA, 2000 | DOI | MR | Zbl
[5] Yanyuan Ma, M. G. Genton, “Flexible class of skew-symmetric distributions”, Scand. J. Statist., 31:3 (2004), 459–468 | DOI | MR | Zbl
[6] Yanyuan Ma, M. G. Genton, A. A. Tsiatis, “Locally efficient semiparametric estimators for generalized skew-elliptical distributions”, J. Amer. Statist. Assoc., 100:471 (2005), 980–989 | DOI | MR | Zbl
[7] C. J. Potgieter, M. G. Genton, “Characteristic function-based semiparametric inference for skew-symmetric models”, Scand. J. Statist., 40:3 (2013), 471–490 | DOI | MR | Zbl
[8] L. Sakhanenko, “Testing for ellipsoidal symmetry: a comparison study”, Comput. Statist. Data Anal., 53:2 (2008), 565–581 | DOI | MR | Zbl
[9] L. Sakhanenko, “Testing group symmetry of a multivariate distribution”, Symmetry, 1:2 (2009), 180–200 | DOI | MR | Zbl
[10] A. W. van der Vaart, J. A. Wellner, Weak convergence and empirical processes. With applications to statistics, Springer Ser. Statist., Springer-Verlag, New York, 1996, xvi+508 pp. | DOI | MR | Zbl
[11] Jiuzhou Wang, J. Boyer, M. G. Genton, “A skew-symmetric representation of multivariate distributions”, Statist. Sinica, 14:4 (2004), 1259–1270 | MR | Zbl