Testing a multivariate distribution for generalized skew ellipticity
Teoriâ veroâtnostej i ee primeneniâ, Tome 64 (2019) no. 2, pp. 358-374 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the problem of testing whether a sample comes from a family of the multivariate generalized skew-elliptical distributions with an unknown location parameter, an unknown scaling matrix, and an unknown distribution of the symmetric component, specified up to a parameter skewing function with an unknown parameter value. We propose test statistics that are functionals of empirical processes indexed by classes of functions. Under mild smoothness conditions on the skewing function and the functional class, we obtain the asymptotic theory for these tests. They are consistent against any fixed alternative, invariant under a group of affine transformations, and flexible to implement. However, the limiting process depends on the unknown parameters in a complicated way. To overcome this obstacle, we propose a bootstrapped modification of the testing procedure, prove that it works theoretically, and illustrate its practical performance on a simulation study.
Keywords: generalized skew-elliptical distribution, bootstrap, hypothesis testing.
@article{TVP_2019_64_2_a6,
     author = {L. A. Sakhanenko},
     title = {Testing a~multivariate distribution for generalized skew ellipticity},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {358--374},
     year = {2019},
     volume = {64},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2019_64_2_a6/}
}
TY  - JOUR
AU  - L. A. Sakhanenko
TI  - Testing a multivariate distribution for generalized skew ellipticity
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2019
SP  - 358
EP  - 374
VL  - 64
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_2019_64_2_a6/
LA  - ru
ID  - TVP_2019_64_2_a6
ER  - 
%0 Journal Article
%A L. A. Sakhanenko
%T Testing a multivariate distribution for generalized skew ellipticity
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2019
%P 358-374
%V 64
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_2019_64_2_a6/
%G ru
%F TVP_2019_64_2_a6
L. A. Sakhanenko. Testing a multivariate distribution for generalized skew ellipticity. Teoriâ veroâtnostej i ee primeneniâ, Tome 64 (2019) no. 2, pp. 358-374. http://geodesic.mathdoc.fr/item/TVP_2019_64_2_a6/

[1] M. G. Genton (ed.), Skew-elliptical distributions and their applications. A journey beyond normality, Chapman Hall/CRC, Boca Raton, FL, 2004, xviii+396 pp. | DOI | MR | Zbl

[2] M. G. Genton, N. M. R. Loperfido, “Generalized skew-elliptical distributions and their quadratic forms”, Ann. Inst. Statist. Math., 57:2 (2005), 389–401 | DOI | MR | Zbl

[3] M. D. Jiménez-Gamero, M. V. Alba-Fernández, P. Jodrá, Y. Chalco-Cano, “Testing for the symmetric component in skew distributions”, Math. Methods Appl. Sci., 39:16 (2016), 4713–4722 | DOI | MR | Zbl

[4] V. Koltchinskii, L. Sakhanenko, “Testing for ellipsoidal symmetry of a multivariate distribution”, High dimensional probability II (Seattle, WA, 1999), Progr. Probab., 47, Birkhäuser Boston, Boston, MA, 2000 | DOI | MR | Zbl

[5] Yanyuan Ma, M. G. Genton, “Flexible class of skew-symmetric distributions”, Scand. J. Statist., 31:3 (2004), 459–468 | DOI | MR | Zbl

[6] Yanyuan Ma, M. G. Genton, A. A. Tsiatis, “Locally efficient semiparametric estimators for generalized skew-elliptical distributions”, J. Amer. Statist. Assoc., 100:471 (2005), 980–989 | DOI | MR | Zbl

[7] C. J. Potgieter, M. G. Genton, “Characteristic function-based semiparametric inference for skew-symmetric models”, Scand. J. Statist., 40:3 (2013), 471–490 | DOI | MR | Zbl

[8] L. Sakhanenko, “Testing for ellipsoidal symmetry: a comparison study”, Comput. Statist. Data Anal., 53:2 (2008), 565–581 | DOI | MR | Zbl

[9] L. Sakhanenko, “Testing group symmetry of a multivariate distribution”, Symmetry, 1:2 (2009), 180–200 | DOI | MR | Zbl

[10] A. W. van der Vaart, J. A. Wellner, Weak convergence and empirical processes. With applications to statistics, Springer Ser. Statist., Springer-Verlag, New York, 1996, xvi+508 pp. | DOI | MR | Zbl

[11] Jiuzhou Wang, J. Boyer, M. G. Genton, “A skew-symmetric representation of multivariate distributions”, Statist. Sinica, 14:4 (2004), 1259–1270 | MR | Zbl