The Tanaka formula for symmetric stable processes with index $\alpha $, $0\alpha 2$
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 64 (2019) no. 2, pp. 328-357
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			For a symmetric stable process $Z=(Z_t)_{t\ge0}$ of index $0\alpha2$, any $a\in\mathbf{R}$, and $\gamma\in(0,2)$ satisfying $\alpha-1\gamma\alpha$, we give the explicit form of the Doob–Meyer decomposition of the submartingale $|Z-a|^\gamma=(|Z_t-a|^{\gamma})_{t\ge0}$, which consists of $|a|^{\gamma}$, a stochastic integral with respect to the compensated Poisson random measure
associated with $Z$, and a predictable increasing process. If $1\alpha2$, then the case $\gamma=\alpha-1$, corresponding to the famous Tanaka formula, is also considered. This extends results of Salminen and Yor [Tanaka formula for symmetric Lévy processes, in Séminaire de Probabilités XL, Springer, 2007, pp. 265–285] to general indexes $0\alpha2$ using a different approach. Related works are [H. Tanaka, Z. Wahrsch. Verw. Geb., 1 (1963), pp. 251–257], [P. Fitzsimmons and R. K. Getoor, Ann. Inst. H. Poincaré Probab. Statist., 28 (1992), pp. 311–333], [T. Yamada, Tanaka Formula for Symmetric Stable Processes of Index $\alpha$, $1\alpha2$, manuscript, 1997],
and [K. Yamada, Fractional derivatives of local times of $\alpha$-stable Lévy processes as the limits of occupation time problems,
in Limit Theorems in Probability and Statistics, Vol. II, János Bolyai Math. Soc., 2002, pp. 553–573].
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
symmetric stable processes
Mots-clés : Tanaka's formula, mollifiers, Fourier transform.
                    
                  
                
                
                Mots-clés : Tanaka's formula, mollifiers, Fourier transform.
@article{TVP_2019_64_2_a5,
     author = {H.-J. Engelbert and V. P. Kurenok},
     title = {The {Tanaka} formula for symmetric stable processes with index $\alpha $, $0<\alpha <2$},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {328--357},
     publisher = {mathdoc},
     volume = {64},
     number = {2},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2019_64_2_a5/}
}
                      
                      
                    TY - JOUR AU - H.-J. Engelbert AU - V. P. Kurenok TI - The Tanaka formula for symmetric stable processes with index $\alpha $, $0<\alpha <2$ JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2019 SP - 328 EP - 357 VL - 64 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_2019_64_2_a5/ LA - en ID - TVP_2019_64_2_a5 ER -
%0 Journal Article %A H.-J. Engelbert %A V. P. Kurenok %T The Tanaka formula for symmetric stable processes with index $\alpha $, $0<\alpha <2$ %J Teoriâ veroâtnostej i ee primeneniâ %D 2019 %P 328-357 %V 64 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/TVP_2019_64_2_a5/ %G en %F TVP_2019_64_2_a5
H.-J. Engelbert; V. P. Kurenok. The Tanaka formula for symmetric stable processes with index $\alpha $, $0<\alpha <2$. Teoriâ veroâtnostej i ee primeneniâ, Tome 64 (2019) no. 2, pp. 328-357. http://geodesic.mathdoc.fr/item/TVP_2019_64_2_a5/
