The Tanaka formula for symmetric stable processes with index $\alpha $, $0\alpha 2$
Teoriâ veroâtnostej i ee primeneniâ, Tome 64 (2019) no. 2, pp. 328-357 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For a symmetric stable process $Z=(Z_t)_{t\ge0}$ of index $0<\alpha<2$, any $a\in\mathbf{R}$, and $\gamma\in(0,2)$ satisfying $\alpha-1<\gamma<\alpha$, we give the explicit form of the Doob–Meyer decomposition of the submartingale $|Z-a|^\gamma=(|Z_t-a|^{\gamma})_{t\ge0}$, which consists of $|a|^{\gamma}$, a stochastic integral with respect to the compensated Poisson random measure associated with $Z$, and a predictable increasing process. If $1<\alpha<2$, then the case $\gamma=\alpha-1$, corresponding to the famous Tanaka formula, is also considered. This extends results of Salminen and Yor [Tanaka formula for symmetric Lévy processes, in Séminaire de Probabilités XL, Springer, 2007, pp. 265–285] to general indexes $0<\alpha<2$ using a different approach. Related works are [H. Tanaka, Z. Wahrsch. Verw. Geb., 1 (1963), pp. 251–257], [P. Fitzsimmons and R. K. Getoor, Ann. Inst. H. Poincaré Probab. Statist., 28 (1992), pp. 311–333], [T. Yamada, Tanaka Formula for Symmetric Stable Processes of Index $\alpha$, $1<\alpha<2$, manuscript, 1997], and [K. Yamada, Fractional derivatives of local times of $\alpha$-stable Lévy processes as the limits of occupation time problems, in Limit Theorems in Probability and Statistics, Vol. II, János Bolyai Math. Soc., 2002, pp. 553–573].
Keywords: symmetric stable processes
Mots-clés : Tanaka's formula, mollifiers, Fourier transform.
@article{TVP_2019_64_2_a5,
     author = {H.-J. Engelbert and V. P. Kurenok},
     title = {The {Tanaka} formula for symmetric stable processes with index $\alpha $, $0<\alpha <2$},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {328--357},
     year = {2019},
     volume = {64},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2019_64_2_a5/}
}
TY  - JOUR
AU  - H.-J. Engelbert
AU  - V. P. Kurenok
TI  - The Tanaka formula for symmetric stable processes with index $\alpha $, $0<\alpha <2$
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2019
SP  - 328
EP  - 357
VL  - 64
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_2019_64_2_a5/
LA  - en
ID  - TVP_2019_64_2_a5
ER  - 
%0 Journal Article
%A H.-J. Engelbert
%A V. P. Kurenok
%T The Tanaka formula for symmetric stable processes with index $\alpha $, $0<\alpha <2$
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2019
%P 328-357
%V 64
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_2019_64_2_a5/
%G en
%F TVP_2019_64_2_a5
H.-J. Engelbert; V. P. Kurenok. The Tanaka formula for symmetric stable processes with index $\alpha $, $0<\alpha <2$. Teoriâ veroâtnostej i ee primeneniâ, Tome 64 (2019) no. 2, pp. 328-357. http://geodesic.mathdoc.fr/item/TVP_2019_64_2_a5/

[1] D. Applebaum, Lévy processes and stochastic calculus, Cambridge Stud. Adv. Math., 116, 2nd ed., Cambridge Univ. Press, Cambridge, 2009, xxx+460 pp. | DOI | MR | Zbl

[2] H. Bauer, Maß- und Integrationstheorie, de Gruyter Lehrbuch, 2nd ed., Walter de Gruyter Co., Berlin, 1992, xviii+260 pp. | MR | Zbl

[3] L. Debnath, Nonlinear partial differential equations for scientists and engineers, 3rd ed., Birkhäuser/Springer, New York, 2012, xxiv+860 pp. | DOI | MR | Zbl

[4] P. Fitzsimmons, R. K. Getoor, “Limit theorems and variation properties for fractional derivatives of the local time of a stable process”, Ann. Inst. H. Poincaré Probab. Statist., 28:2 (1992), 311–333 | MR | Zbl

[5] N. Ikeda, Sh. Watanabe, Stochastic differential equations and diffusion processes, North-Holland Math. Library, 24, 2nd ed., North-Holland Publishing Co., Amsterdam; Kodansha, Ltd., Tokyo, 1989, xvi+555 pp. ; S. Vatanabe, N. Ikeda, Stokhasticheskie differentsialnye uravneniya i diffuzionnye protsessy, Nauka, M., 1986, 446 pp. | MR | Zbl | MR | Zbl

[6] J. Jacod, A. N. Shiryaev, Limit theorems for stochastic processes, Grundlehren Math. Wiss., 288, 2nd ed., Springer-Verlag, Berlin, 2003, xx+661 pp. ; Zh. Zhakod, A. N. Shiryaev, Predelnye teoremy dlya sluchainykh protsessov, v. 1, 2, Fizmatlit, M., 1994, 544 s., 368 pp. | DOI | MR | Zbl | MR | MR | Zbl

[7] I. Karatzas, S. E. Shreve, Brownian motion and stochastic calculus, Grad. Texts in Math., 113, Springer-Verlag, New York, 1988, xxiv+470 pp. | DOI | MR | Zbl

[8] T. Komatsu, “On the pathwise uniqueness of solutions of one-dimensional stochastic differential equations of jump type”, Proc. Japan Acad. Ser. A Math. Sci., 58:8 (1982), 353–356 | DOI | MR | Zbl

[9] P.-A. Meyer, Probability and potentials, Blaisdell Publishing Co. Ginn and Co., Waltham, MA–Toronto, ON–London, 1966, xiii+266 pp. | MR | Zbl | Zbl

[10] Ph. E. Protter, Stochastic integration and differential equations, Appl. Math. (N. Y.), 21, 2nd ed., Springer-Verlag, Berlin, 2004, xiv+415 pp. | DOI | MR | Zbl

[11] P. Salminen, M. Yor, “Tanaka formula for symmetric Lévy processes”, Séminaire de Probabilités XL, Lecture Notes in Math., 1899, Springer, Berlin, 2007, 265–285 | DOI | MR | Zbl

[12] A. V. Skorokhod, Random processes with independent increments, Math. Appl. (Soviet Ser.), 47, Kluwer Acad. Publ., Dordrecht, 1991, xii+279 pp. | MR | MR | Zbl | Zbl

[13] H. Tanaka, “Note on continuous additive functionals of the 1-dimensional Brownian motion path”, Z. Wahrscheinlichkeitstheor. verw. Geb., 1:3 (1963), 251–257 | DOI | MR | Zbl

[14] H. Tsukada, Tanaka formula for strictly stable processes, 2017, arXiv: 1702.00595

[15] K. Yamada, “Fractional derivatives of local times of $\alpha$-stable Lévy processes as the limits of occupation time problems”, Limit theorems in probability and statistics (Balatonlelle, 1999), v. II, János Bolyai Math. Soc., Budapest, 2002, 553–573 | MR | Zbl

[16] T. Yamada, Tanaka formula for symmetric stable processes of index $\alpha$, $1\alpha\nobreak 2$, Unpublished manuscript, 1997

[17] P. A. Zanzotto, “On solutions of one-dimensional stochastic differential equations driven by stable Lévy motion”, Stochastic Process. Appl., 68:2 (1997), 209–228 | DOI | MR | Zbl