Generators of quantum one-dimensional diffusions
Teoriâ veroâtnostej i ee primeneniâ, Tome 64 (2019) no. 2, pp. 308-327 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Quantum dynamical semigroups represent a noncommutative analogue of (sub)Markov semigroups in classical probability: while the latter are semigroups of maps in functional spaces, the former are semigroups of maps in operator algebras having certain properties of positivity and normalization. In this paper we describe quantum dynamical semigroups, which are the noncommutative analogues of classical diffusions on $\mathbf{R}$ and $\mathbf{R}_{+}$, and demonstrate various properties of the semigroup and its generator depending on the boundary condition. We also give a proof of a result describing the domain of the generator of "noncommutative diffusion on $\mathbf{R}_{+}$ with extinction at 0" and give an explicit example of the trace-class operator in this domain, which does not belong to the domain of closure of the initial operator.
Keywords: quantum dynamical semigroup, generator, quantum Markovian master equations
Mots-clés : quantum diffusion, minimal solution.
@article{TVP_2019_64_2_a4,
     author = {A. S. Kholevo},
     title = {Generators of quantum one-dimensional diffusions},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {308--327},
     year = {2019},
     volume = {64},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2019_64_2_a4/}
}
TY  - JOUR
AU  - A. S. Kholevo
TI  - Generators of quantum one-dimensional diffusions
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2019
SP  - 308
EP  - 327
VL  - 64
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_2019_64_2_a4/
LA  - ru
ID  - TVP_2019_64_2_a4
ER  - 
%0 Journal Article
%A A. S. Kholevo
%T Generators of quantum one-dimensional diffusions
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2019
%P 308-327
%V 64
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_2019_64_2_a4/
%G ru
%F TVP_2019_64_2_a4
A. S. Kholevo. Generators of quantum one-dimensional diffusions. Teoriâ veroâtnostej i ee primeneniâ, Tome 64 (2019) no. 2, pp. 308-327. http://geodesic.mathdoc.fr/item/TVP_2019_64_2_a4/

[1] B. V. R. Bhat, F. Fagnola, K. B. Sinha, “On quantum extensions of semigroups of Brownian motion on a half-line”, Russian J. Math. Phys., 4:1 (1996), 13–28 | MR | Zbl

[2] B. V. R. Bhat, K. R. Parthasarathy, “Markov dilations of nonconservative dynamical semigroups and a quantum boundary theory”, Ann. Inst. H. Poincaré Probab. Statist., 31:4 (1995), 601–651 | MR | Zbl

[3] O. Bratteli, D. W. Robinson, Operator algebras and quantum statistical mechanics, v. I, Texts Monogr. Phys., $C^*$- and $W^*$-algebras. Symmetry groups. Decomposition of states, Springer-Verlag, New York–Heidelberg, 1979, xii+500 pp. | MR | MR | Zbl | Zbl

[4] A. M. Chebotarev, “Sufficient conditions for dissipative dynamical semigroups to be conservative”, Theoret. and Math. Phys., 80:2 (1989), 804–818 | DOI | MR | Zbl

[5] A. M. Chebotarev, Lectures on quantum probability, Aportaciones Mat. Textos, 14, Soc. Mat. Mexicana, Mexico, 2000, vi+292 pp. | MR | Zbl

[6] A. M. Chebotarev, F. Fagnola, “Sufficient conditions for conservativity of quantum dynamical semigroups”, J. Funct. Anal., 118:1 (1993), 131–153 | DOI | MR | Zbl

[7] E. B. Davies, “Quantum dynamical semigroups and the neutron diffusion equation”, Rep. Math. Phys., 11:2 (1977), 169–188 | DOI | MR | Zbl

[8] W. Feller, An introduction to probability theory and its applications, v. 1, 2, John Wiley Sons, Inc., New York–London–Sydney, 1968, 1971, xviii+509 pp., xxiv+669 pp. | MR | MR | MR | Zbl | Zbl

[9] I. C. Gohberg, M. G. Krein, Introduction to the theory of linear nonselfadjoint operators, Transl. Math. Monogr., 18, Amer. Math. Soc., Providence, R.I., 1969, xv+378 pp. | MR | MR | Zbl | Zbl

[10] V. Gorini, A. Kossakowski, E. C. G. Sudarshan, “Completely positive dynamical semigroups of $N$-level systems”, J. Math. Phys., 17:5 (1976), 821–825 | DOI | MR

[11] A. S. Kholevo, “Generalized imprimitivity systems for Abelian groups”, Soviet Math. (Iz. VUZ), 27:2 (1983), 53–80 | MR | Zbl

[12] A. S. Holevo, “On conservativity of covariant dynamical semigroups”, Rep. Math. Phys., 33:1-2 (1993), 95–110 | DOI | MR | Zbl

[13] A. S. Holevo, “Excessive maps, “arrival times” and perturbation of dynamical semigroups”, Izv. Math., 59:6 (1995), 1311–1325 | DOI | MR | Zbl

[14] A. S. Holevo, “On the structure of covariant dynamical semigroups”, J. Funct. Anal., 131:2 (1995), 255–278 | DOI | MR | Zbl

[15] A. S. Holevo, “On dissipative stochastic equations in a Hilbert space”, Probab. Theory Related Fields, 104:4 (1996), 483–500 | DOI | MR | Zbl

[16] A. S. Kholevo, “There exists a non-standard dynamical semigroup on $\mathfrak L(\mathscr H)$”, Russian Math. Surveys, 51:6 (1996), 1206–1207 | DOI | DOI | MR | Zbl

[17] A. S. Holevo, Statistical structure of quantum theory, Lect. Notes Phys. Monogr., 67, Springer-Verlag, Berlin, 2001, x+159 pp. | DOI | MR | Zbl

[18] A. S. Holevo, “On singular perturbations of quantum dynamical semigroups”, Math. Notes, 103:1 (2018), 133–144 | DOI | MR | Zbl

[19] A. S. Kholevo, “Kvantovye dinamicheskie polugruppy: nestandartnye generatory, stokhasticheskie predstavleniya”, V st. “Tezisy dokladov, predstavlennykh na Tretei mezhdunarodnoi konferentsii po stokhasticheskim metodam”, Teoriya veroyatn. i ee primen., 64:1 (2019), 169–171 | DOI

[20] G. Lindblad, “On the generators of quantum dynamical semigroups”, Comm. Math. Phys., 48:2 (1976), 119–130 | DOI | MR | Zbl

[21] A. Mohari, K. B. Sinha, “Stochastic dilation of minimal quantum dynamical semigroup”, Proc. Indian Acad. Sci. Math. Sci., 102:3 (1992), 159–173 | MR | Zbl

[22] S. M. Nikol'skii, Approximation of functions of several variables and imbedding theorems, Grundlehren Math. Wiss., 205, Springer-Verlag, New York–Heidelberg, 1975, viii+418 pp. | MR | MR | Zbl | Zbl

[23] M. Reed, B. Simon, Methods of modern mathematical physics, v. II, Fourier analysis, self-adjointness, Academic Press, New York–London, 1975, xv+361 pp. | MR | MR | Zbl

[24] I. Siemon, A. S. Holevo, R. F. Werner, “Unbounded generators of dynamical semigroups”, Open Syst. Inf. Dyn., 24:4 (2017), 1740015, 24 pp. | DOI | MR | Zbl