Branching random walks on $\mathbf{Z}^d$ with periodic branching sources
Teoriâ veroâtnostej i ee primeneniâ, Tome 64 (2019) no. 2, pp. 283-307

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a continuous-time branching random walk on $\mathbf{Z}^d$ with birth and death of particles at a periodic set of points (the sources of branching). Spectral properties of the evolution operator of the mean number of particles at an arbitrary point of the lattice are studied. The leading term of the asymptotics as $t\to\infty$ of the mean number of particles at a given point is obtained. Under an additional moment condition, an asymptotic series expansion of the mean number of particles is derived.
Keywords: branching random walk
Mots-clés : periodic perturbation, evolution equation.
@article{TVP_2019_64_2_a3,
     author = {M. V. Platonova and K. S. Ryadovkin},
     title = {Branching random walks on $\mathbf{Z}^d$ with periodic branching sources},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {283--307},
     publisher = {mathdoc},
     volume = {64},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2019_64_2_a3/}
}
TY  - JOUR
AU  - M. V. Platonova
AU  - K. S. Ryadovkin
TI  - Branching random walks on $\mathbf{Z}^d$ with periodic branching sources
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2019
SP  - 283
EP  - 307
VL  - 64
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2019_64_2_a3/
LA  - ru
ID  - TVP_2019_64_2_a3
ER  - 
%0 Journal Article
%A M. V. Platonova
%A K. S. Ryadovkin
%T Branching random walks on $\mathbf{Z}^d$ with periodic branching sources
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2019
%P 283-307
%V 64
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2019_64_2_a3/
%G ru
%F TVP_2019_64_2_a3
M. V. Platonova; K. S. Ryadovkin. Branching random walks on $\mathbf{Z}^d$ with periodic branching sources. Teoriâ veroâtnostej i ee primeneniâ, Tome 64 (2019) no. 2, pp. 283-307. http://geodesic.mathdoc.fr/item/TVP_2019_64_2_a3/