Mots-clés : periodic perturbation, evolution equation.
@article{TVP_2019_64_2_a3,
author = {M. V. Platonova and K. S. Ryadovkin},
title = {Branching random walks on $\mathbf{Z}^d$ with periodic branching sources},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {283--307},
year = {2019},
volume = {64},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2019_64_2_a3/}
}
TY - JOUR
AU - M. V. Platonova
AU - K. S. Ryadovkin
TI - Branching random walks on $\mathbf{Z}^d$ with periodic branching sources
JO - Teoriâ veroâtnostej i ee primeneniâ
PY - 2019
SP - 283
EP - 307
VL - 64
IS - 2
UR - http://geodesic.mathdoc.fr/item/TVP_2019_64_2_a3/
LA - ru
ID - TVP_2019_64_2_a3
ER -
M. V. Platonova; K. S. Ryadovkin. Branching random walks on $\mathbf{Z}^d$ with periodic branching sources. Teoriâ veroâtnostej i ee primeneniâ, Tome 64 (2019) no. 2, pp. 283-307. http://geodesic.mathdoc.fr/item/TVP_2019_64_2_a3/
[1] E. A. Antonenko, E. B. Yarovaya, “Raspolozhenie sobstvennykh znachenii v spektre evolyutsionnogo operatora v vetvyaschemsya sluchainom bluzhdanii”, Sovremennye problemy matematiki i mekhaniki, 10:3 (2015), 9–22
[2] M. Sh. Birman, M. Z. Solomyak, Spectral theory of self-adjoint operators in Hilbert space, Math. Appl. (Soviet Ser.), 5, D. Reidel Publ. Co., Dordrecht, 1987, xv+301 pp. | MR | Zbl
[3] M. Sh. Birman, T. A. Suslina, “Second order periodic differential operators. Threshold properties and homogenization”, St. Petersburg Math. J., 15:5 (2004), 639–714 | DOI | MR | Zbl
[4] I. I. Gikhman, A. V. Skorokhod, Introduction to the theory of random processes, W. B. Saunders Co., Philadelphia, Pa.–London–Toronto, Ont., 1969, xiii+516 pp. | MR | MR | Zbl
[5] P. A. Kuchment, “Floquet theory for partial differential equations”, Russian Math. Surveys, 37:4 (1982), 1–60 | DOI | MR | Zbl
[6] M. V. Platonova, K. S. Ryadovkin, “Asimptoticheskoe povedenie srednego chisla chastits vetvyaschegosya sluchainogo bluzhdaniya na reshetke $\mathbf {Z}^d$ s periodicheskimi istochnikami vetvleniya”, Veroyatnost i statistika. 26, Zap. nauch. sem. POMI, 466, POMI, SPb., 2017, 234–256
[7] B. A. Sewastjanow, Verzweigungsprozesse, Math. Lehrbücher Monogr. II. Abt. Math. Monogr., 34, Akademie-Verlag, Berlin, 1974, xi+326 pp. | MR | MR | Zbl | Zbl
[8] M. V. Fedoryuk, Metod perevala, Nauka, M., 1977, 368 pp. | MR | Zbl
[9] E. B. Yarovaya, Vetvyaschiesya sluchainye bluzhdaniya v neodnorodnoi srede, Izd-vo TsPI pri mekh.-matem. f-te MGU, M., 2007, 104 pp.
[10] E. B. Yarovaya, “Criteria of exponential growth for the numbers of particles in models of branching random walks”, Theory Probab. Appl., 55:4 (2011), 661–682 | DOI | DOI | MR | Zbl
[11] E. B. Yarovaya, “Spectral properties of evolutionary operators in branching random walk models”, Math. Notes, 92:1 (2012), 115–131 | DOI | DOI | MR | Zbl
[12] G. Berkolaiko, P. Kuchment, Introduction to quantum graphs, Math. Surveys Monogr., 186, Amer. Math. Soc., Providence, RI, 2013, xiv+270 pp. | MR | Zbl
[13] N. Filonov, A. V. Sobolev, “Absence of the singular continuous component in spectra of analytic direct integrals”, J. Math. Sci. (N. Y.), 136:2 (2006), 3826–3831 | DOI | MR | Zbl
[14] Y. Higuchi, Y. Nomura, “Spectral structure of the Laplacian on a covering graph”, European J. Combin., 30:2 (2009), 570–585 | DOI | MR | Zbl
[15] Y. Higuchi, T. Shirai, “Some spectral and geometric properties for infinite graphs”, Discrete geometric analysis, Contemp. Math., 347, Amer. Math. Soc., Providence, RI, 2004, 29–56 | DOI | MR | Zbl
[16] R. A. Horn, C. R. Johnson, Matrix analysis, 2nd ed., Cambridge Univ. Press, Cambridge, 2013, xviii+643 pp. | DOI | MR | MR | Zbl | Zbl
[17] E. Korotyaev, N. Saburova, “Schrödinger operators on periodic discrete graphs”, J. Math. Anal. Appl., 420:1 (2014), 576–611 | DOI | MR | Zbl
[18] E. Korotyaev, N. Saburova, “Schrödinger operators with guided potentials on periodic graphs”, Proc. Amer. Math. Soc., 145:11 (2017), 4869–4883 | DOI | MR | Zbl
[19] B. Mohar, “Some relations between analytic and geometric properties of infinite graphs”, Discrete Math., 95:1-3 (1991), 193–219 | DOI | MR | Zbl
[20] M. Reed, B. Simon, Methods of modern mathematical physics, v. IV, Analysis of operators, Academic Press, New York–London, 1978, xv+396 pp. | MR | MR | Zbl | Zbl
[21] P. W. Sy, T. Sunada, “Discrete Schrödinger operators on a graph”, Nagoya Math. J., 125 (1992), 141–150 | DOI | MR | Zbl