Branching random walks on $\mathbf{Z}^d$ with periodic branching sources
Teoriâ veroâtnostej i ee primeneniâ, Tome 64 (2019) no. 2, pp. 283-307 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a continuous-time branching random walk on $\mathbf{Z}^d$ with birth and death of particles at a periodic set of points (the sources of branching). Spectral properties of the evolution operator of the mean number of particles at an arbitrary point of the lattice are studied. The leading term of the asymptotics as $t\to\infty$ of the mean number of particles at a given point is obtained. Under an additional moment condition, an asymptotic series expansion of the mean number of particles is derived.
Keywords: branching random walk
Mots-clés : periodic perturbation, evolution equation.
@article{TVP_2019_64_2_a3,
     author = {M. V. Platonova and K. S. Ryadovkin},
     title = {Branching random walks on $\mathbf{Z}^d$ with periodic branching sources},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {283--307},
     year = {2019},
     volume = {64},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2019_64_2_a3/}
}
TY  - JOUR
AU  - M. V. Platonova
AU  - K. S. Ryadovkin
TI  - Branching random walks on $\mathbf{Z}^d$ with periodic branching sources
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2019
SP  - 283
EP  - 307
VL  - 64
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_2019_64_2_a3/
LA  - ru
ID  - TVP_2019_64_2_a3
ER  - 
%0 Journal Article
%A M. V. Platonova
%A K. S. Ryadovkin
%T Branching random walks on $\mathbf{Z}^d$ with periodic branching sources
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2019
%P 283-307
%V 64
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_2019_64_2_a3/
%G ru
%F TVP_2019_64_2_a3
M. V. Platonova; K. S. Ryadovkin. Branching random walks on $\mathbf{Z}^d$ with periodic branching sources. Teoriâ veroâtnostej i ee primeneniâ, Tome 64 (2019) no. 2, pp. 283-307. http://geodesic.mathdoc.fr/item/TVP_2019_64_2_a3/

[1] E. A. Antonenko, E. B. Yarovaya, “Raspolozhenie sobstvennykh znachenii v spektre evolyutsionnogo operatora v vetvyaschemsya sluchainom bluzhdanii”, Sovremennye problemy matematiki i mekhaniki, 10:3 (2015), 9–22

[2] M. Sh. Birman, M. Z. Solomyak, Spectral theory of self-adjoint operators in Hilbert space, Math. Appl. (Soviet Ser.), 5, D. Reidel Publ. Co., Dordrecht, 1987, xv+301 pp. | MR | Zbl

[3] M. Sh. Birman, T. A. Suslina, “Second order periodic differential operators. Threshold properties and homogenization”, St. Petersburg Math. J., 15:5 (2004), 639–714 | DOI | MR | Zbl

[4] I. I. Gikhman, A. V. Skorokhod, Introduction to the theory of random processes, W. B. Saunders Co., Philadelphia, Pa.–London–Toronto, Ont., 1969, xiii+516 pp. | MR | MR | Zbl

[5] P. A. Kuchment, “Floquet theory for partial differential equations”, Russian Math. Surveys, 37:4 (1982), 1–60 | DOI | MR | Zbl

[6] M. V. Platonova, K. S. Ryadovkin, “Asimptoticheskoe povedenie srednego chisla chastits vetvyaschegosya sluchainogo bluzhdaniya na reshetke $\mathbf {Z}^d$ s periodicheskimi istochnikami vetvleniya”, Veroyatnost i statistika. 26, Zap. nauch. sem. POMI, 466, POMI, SPb., 2017, 234–256

[7] B. A. Sewastjanow, Verzweigungsprozesse, Math. Lehrbücher Monogr. II. Abt. Math. Monogr., 34, Akademie-Verlag, Berlin, 1974, xi+326 pp. | MR | MR | Zbl | Zbl

[8] M. V. Fedoryuk, Metod perevala, Nauka, M., 1977, 368 pp. | MR | Zbl

[9] E. B. Yarovaya, Vetvyaschiesya sluchainye bluzhdaniya v neodnorodnoi srede, Izd-vo TsPI pri mekh.-matem. f-te MGU, M., 2007, 104 pp.

[10] E. B. Yarovaya, “Criteria of exponential growth for the numbers of particles in models of branching random walks”, Theory Probab. Appl., 55:4 (2011), 661–682 | DOI | DOI | MR | Zbl

[11] E. B. Yarovaya, “Spectral properties of evolutionary operators in branching random walk models”, Math. Notes, 92:1 (2012), 115–131 | DOI | DOI | MR | Zbl

[12] G. Berkolaiko, P. Kuchment, Introduction to quantum graphs, Math. Surveys Monogr., 186, Amer. Math. Soc., Providence, RI, 2013, xiv+270 pp. | MR | Zbl

[13] N. Filonov, A. V. Sobolev, “Absence of the singular continuous component in spectra of analytic direct integrals”, J. Math. Sci. (N. Y.), 136:2 (2006), 3826–3831 | DOI | MR | Zbl

[14] Y. Higuchi, Y. Nomura, “Spectral structure of the Laplacian on a covering graph”, European J. Combin., 30:2 (2009), 570–585 | DOI | MR | Zbl

[15] Y. Higuchi, T. Shirai, “Some spectral and geometric properties for infinite graphs”, Discrete geometric analysis, Contemp. Math., 347, Amer. Math. Soc., Providence, RI, 2004, 29–56 | DOI | MR | Zbl

[16] R. A. Horn, C. R. Johnson, Matrix analysis, 2nd ed., Cambridge Univ. Press, Cambridge, 2013, xviii+643 pp. | DOI | MR | MR | Zbl | Zbl

[17] E. Korotyaev, N. Saburova, “Schrödinger operators on periodic discrete graphs”, J. Math. Anal. Appl., 420:1 (2014), 576–611 | DOI | MR | Zbl

[18] E. Korotyaev, N. Saburova, “Schrödinger operators with guided potentials on periodic graphs”, Proc. Amer. Math. Soc., 145:11 (2017), 4869–4883 | DOI | MR | Zbl

[19] B. Mohar, “Some relations between analytic and geometric properties of infinite graphs”, Discrete Math., 95:1-3 (1991), 193–219 | DOI | MR | Zbl

[20] M. Reed, B. Simon, Methods of modern mathematical physics, v. IV, Analysis of operators, Academic Press, New York–London, 1978, xv+396 pp. | MR | MR | Zbl | Zbl

[21] P. W. Sy, T. Sunada, “Discrete Schrödinger operators on a graph”, Nagoya Math. J., 125 (1992), 141–150 | DOI | MR | Zbl