Mots-clés : anomalous diffusion
@article{TVP_2019_64_2_a2,
author = {E. S. Palamarchuk},
title = {On upper functions for anomalous diffusions governed by time-varying {Ornstein{\textendash}Uhlenbeck} process},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {258--282},
year = {2019},
volume = {64},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2019_64_2_a2/}
}
TY - JOUR AU - E. S. Palamarchuk TI - On upper functions for anomalous diffusions governed by time-varying Ornstein–Uhlenbeck process JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2019 SP - 258 EP - 282 VL - 64 IS - 2 UR - http://geodesic.mathdoc.fr/item/TVP_2019_64_2_a2/ LA - ru ID - TVP_2019_64_2_a2 ER -
E. S. Palamarchuk. On upper functions for anomalous diffusions governed by time-varying Ornstein–Uhlenbeck process. Teoriâ veroâtnostej i ee primeneniâ, Tome 64 (2019) no. 2, pp. 258-282. http://geodesic.mathdoc.fr/item/TVP_2019_64_2_a2/
[1] G. A. Pavliotis, Stochastic processes and applications. Diffusion processes, the Fokker–Planck and Langevin equations, Texts Appl. Math., 60, New York, Berlin, 2014, xiv+339 pp. | DOI | MR | Zbl
[2] D. R. Cox, H. D. Miller, The theory of stochastic processes, Chapman and Hall/CRC, London, 2017, x+398 pp. | DOI | MR | Zbl
[3] E. S. Palamarchuk, “An analytic study of the Ornstein–Uhlenbeck process with time-varying coefficients in the modeling of anomalous diffusions”, Autom. Remote Control, 79:2 (2018), 289–299 | DOI | MR | Zbl
[4] E. S. Palamarchuk, “On the generalization of logarithmic upper function for solution of a linear stochastic differential equation with a nonexponentially stable matrix”, Differ. Equ., 54:2 (2018), 193–200 | DOI | DOI | MR | Zbl
[5] I. I. Gikhman, A. V. Skorokhod, Introduction to the theory of random processes, W. B. Saunders Co., Philadelphia, PA–London–Toronto, ON, 1969, xiii+516 pp. | MR | MR | Zbl
[6] T. A. Belkina, Yu. M. Kabanov, E. L. Presman, “On a stochastic optimality of the feedback control in the LQG-problem”, Theory Probab. Appl., 48:4 (2004), 592–603 | DOI | DOI | MR | Zbl
[7] A. V. Bulinskii, A. N. Shiryaev, Teoriya sluchainykh protsessov, Fizmatlit, M., 2003, 400 pp.
[8] W. G. Cumberland, Z. M. Sykes, “Weak convergence of an autoregressive process used in modeling population growth”, J. Appl. Probab., 19:2 (1982), 450–455 | DOI | MR | Zbl
[9] S. L. Heston, “A closed-form solution for options with stochastic volatility with applications to bond and currency options”, Rev. Financ. Stud., 6:2 (1993), 327–343 | DOI | Zbl
[10] B. Bassan, S. Terzi, “Parameter estimation in systems of differential equations, based on three-way data arrays and random time changes”, Appl. Stochastic Models Data Anal., 12:2 (1996), 63–73 | 3.0.CO;2-F class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[11] S. Ditlevsen, M. Sørensen, “Inference for observations of integrated diffusion processes”, Scand. J. Statist., 31:3 (2004), 417–429 | DOI | MR | Zbl
[12] M. Abundo, E. Pirozzi, “Integrated stationary Ornstein–Uhlenbeck process, and double integral processes”, Phys. A, 494 (2018), 265–275 | DOI | MR
[13] E. S. Palamarchuk, “Optimization of the superstable linear stochastic system applied to the model with extremely impatient agents”, Autom. Remote Control, 79:3 (2018), 439–450 | DOI | MR | Zbl
[14] H. Cramér, M. R. Leadbetter, Stationary and related stochastic processes. Sample function properties and their applications, John Wiley Sons, Inc., New York–London–Sydney, 1967, xii+348 pp. | MR | Zbl | Zbl
[15] T. A. Belkina, E. S. Palamarchuk, “On stochastic optimality for a linear controller with attenuating disturbances”, Autom. Remote Control, 74:4 (2013), 628–641 | DOI | MR | Zbl
[16] E. S. Palamarchuk, “Analysis of the asymptotic behavior of the solution to a linear stochastic differential equation with subexponentially stable matrix and its application to a control problem”, Theory Probab. Appl., 62:4 (2018), 522–533 | DOI | DOI | MR | Zbl
[17] Jia-gang Wang, “A law of the iterated logarithm for stochastic integrals”, Stochastic Process. Appl., 47:2 (1993), 215–228 | DOI | MR | Zbl
[18] E. S. Palamarchuk, “Stabilization of linear stochastic systems with a discount: modeling and estimation of the long-term effects from the application of optimal control strategies”, Math. Models Comput. Simul., 7:4 (2015), 381–388 | DOI | MR | Zbl
[19] H. Safdari, A. G. Cherstvy, A. V. Chechkin, A. Bodrova, R. Metzler, “Aging underdamped scaled Brownian motion: ensemble- and time-averaged particle displacements, nonergodicity, and the failure of the overdamping approximation”, Phys. Rev. E, 95:1 (2017), 012120 | DOI
[20] T. Narumi, M. Suzuki, Y. Hidaka, T. Asai, S. Kai, “Active Brownian motion in threshold distribution of a Coulomb blockade model”, Phys. Rev. E, 84:5 (2011), 051137 | DOI
[21] P. L. Smith, C. R. L. McKenzie, “Diffusive information accumulation by minimal recurrent neural models of decision making”, Neural Comput., 23:8 (2011), 2000–2031 | DOI | MR