Approximate Wiener–Hopf factorization and the Monte Carlo methods for Lévy processes
Teoriâ veroâtnostej i ee primeneniâ, Tome 64 (2019) no. 2, pp. 228-257 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the present paper, we justify the convergence formulas for approximate Wiener–Hopf factorization to exact formulas for factors from a broad class of Lévy processes. Another result obtained here is the analysis of the convergence of Monte Carlo methods that are based on time randomization and explicit Wiener–Hopf factorization formulas. The paper puts forward two generalized approaches to the construction of a Monte Carlo method in the case of Lévy models that do not admit explicit Wiener–Hopf factorization. Both methods depend on approximate formulas that do for Wiener–Hopf factors. In the first approach, the simulation of the supremum and infimum processes at exponentially distributed time moments is effected by inverting their approximate cumulative distribution functions. The second approach, which does not require a partition of the path, involves direct simulation of terminal values of the infimum (supremum) process, and can be used for the simulation of the joint distribution of a Lévy process and the corresponding extrema of the process.
Mots-clés : Lévy processes
Keywords: Wiener–Hopf factorization, numerical methods, Monte Carlo methods, the Laplace transform.
@article{TVP_2019_64_2_a1,
     author = {O. E. Kudryavtsev},
     title = {Approximate {Wiener{\textendash}Hopf} factorization and the {Monte} {Carlo} methods for {L\'evy} processes},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {228--257},
     year = {2019},
     volume = {64},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2019_64_2_a1/}
}
TY  - JOUR
AU  - O. E. Kudryavtsev
TI  - Approximate Wiener–Hopf factorization and the Monte Carlo methods for Lévy processes
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2019
SP  - 228
EP  - 257
VL  - 64
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_2019_64_2_a1/
LA  - ru
ID  - TVP_2019_64_2_a1
ER  - 
%0 Journal Article
%A O. E. Kudryavtsev
%T Approximate Wiener–Hopf factorization and the Monte Carlo methods for Lévy processes
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2019
%P 228-257
%V 64
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_2019_64_2_a1/
%G ru
%F TVP_2019_64_2_a1
O. E. Kudryavtsev. Approximate Wiener–Hopf factorization and the Monte Carlo methods for Lévy processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 64 (2019) no. 2, pp. 228-257. http://geodesic.mathdoc.fr/item/TVP_2019_64_2_a1/

[1] J. Abate, W. Whitt, “A unified framework for numerically inverting Laplace transforms”, INFORMS J. Comput., 18:4 (2006), 408–421 | DOI | MR | Zbl

[2] L. Andersen, J. Andreasen, “Jump-diffusion processes: volatility smile fitting and numerical methods for option pricing”, Rev. Deriv. Res., 4:4 (2000), 231–262 | DOI | Zbl

[3] O. E. Barndorff-Nielsen, “Processes of normal inverse Gaussian type”, Finance Stoch., 2:1 (1998), 41–68 | DOI | MR | Zbl

[4] O. E. Barndorff-Nielsen, S. Z. Levendorskii, “Feller processes of normal inverse Gaussian type”, Quant. Finance, 1:3 (2001), 318–331 | DOI | MR | Zbl

[5] M. Boyarchenko, M. de Innocentis, S. Levendorskiǐ, “Prices of barrier and first-touch digital options in Lévy-driven models, near barrier”, Int. J. Theor. Appl. Finance, 14:7 (2011), 1045–1090 | DOI | MR | Zbl

[6] S. I. Boyarchenko, S. Z. Levendorskiǐ, Non-Gaussian Merton–Black–Scholes theory, Adv. Ser. Stat. Sci. Appl. Probab., 9, World Sci. Publ., River Edge, NJ, 2002, xxii+398 pp. | DOI | MR | Zbl

[7] S. Boyarchenko, S. Z. Levendorskiǐ, “American options: the EPV pricing model”, Ann. Finance, 1:3 (2005), 267–292 | DOI | Zbl

[8] S. Boyarchenko, S. Levendorskiǐ, “Efficient Laplace inversion, Wiener–Hopf factorization and pricing lookbacks”, Int. J. Theor. Appl. Finance, 16:3 (2013), 1350011, 40 pp. | DOI | MR | Zbl

[9] S. Boyarchenko, S. Levendorskiǐ, “Efficient pricing of barrier options and credit default swaps in Lévy models with stochastic interest rate”, Math. Finance, 27:4 (2017), 1089–1123 | DOI | MR | Zbl

[10] P. Carr, H. Geman, D. B. Madan, M. Yor, “The fine structure of asset returns: an empirical investigation”, The Journal of Business, 75:2 (2002), 305–332 | DOI

[11] R. Cont, P. Tankov, Financial modelling with jump processes, Chapman Hall/CRC Financ. Math. Ser., 2nd ed., Chapman Hall/CRC, Boca Raton, FL, 2008, 606 pp. | MR | Zbl

[12] R. Cont, E. Voltchkova, “A finite difference scheme for option pricing in jump diffusion and exponential Lévy models”, SIAM J. Numer. Anal., 43:4 (2005), 1596–1626 | DOI | MR | Zbl

[13] G. I. Eskin, Boundary value problems for elliptic pseudodifferential equations, Transl. Math. Monogr., 52, Amer. Math. Soc., Providence, RI, 1981, xi+375 pp. | MR | MR | Zbl | Zbl

[14] A. Ferreiro-Castilla, A. E. Kyprianou, R. Scheichl, G. Suryanarayana, “Multilevel Monte Carlo simulation for Lévy processes based on the Wiener–Hopf factorisation”, Stochastic Process. Appl., 124:2 (2014), 985–1010 | DOI | MR | Zbl

[15] A. Ferreiro-Castilla, K. van Schaik, “Applying the Wiener–Hopf Monte Carlo simulation technique for Lévy processes to path functionals”, J. Appl. Probab., 52:1 (2015), 129–148 | DOI | MR | Zbl

[16] G. Fusai, G. Germano, D. Marazzina, “Spitzer identity, Wiener–Hopf factorization and pricing of discretely monitored exotic options”, European J. Oper. Res., 251:1 (2016), 124–134 | DOI | MR | Zbl

[17] A. Itkin, Pricing derivatives under Lévy models. Modern finite-difference and pseudo-differential operators approach, Pseudo-Differential Operators, 12, Birkhäuser/Springer, New York, 2017, xx+308 pp. | DOI | MR | Zbl

[18] K. R. Jackson, S. Jaimungal, V. Surkov, “Fourier space time-stepping for option pricing with Lévy models”, J. Comput. Finance, 12:2 (2008), 1–29 | DOI | MR | Zbl

[19] Young Shin Kim, S. Rachev, M. L. Bianchi, F. J. Fabozzi, “Computing VaR and AVaR in infinitely divisible distributions”, Probab. Math. Statist., 30:2 (2010), 223–245 | MR | Zbl

[20] S. G. Kou, Hui Wang, “First passage times of a jump diffusion process”, Adv. in Appl. Probab., 35:2 (2003), 504–531 | DOI | MR | Zbl

[21] O. E. Kudryavtsev, “Vychislenie tsen barernykh i amerikanskikh optsionov v modelyakh Levi”, Obozrenie prikladnoi i promyshlennoi matematiki, 17:2 (2010), 210–220

[22] O. Ye. Kudryavtsev, “An efficient numerical method to solve a special class of integro-differential equations relating to the Levy models”, Math. Models Comput. Simul., 3:6 (2011), 706–711 | DOI | MR | Zbl

[23] O. Kudryavtsev, Effektivnye matematicheskie metody vychisleniya tsen optsionov, Palmarium Academic Publishing, Saarbrücken, 2012, 260 pp.

[24] O. Kudryavtsev, “Finite difference methods for option pricing under Lévy processes: Wiener–Hopf factorization approach”, The Scientific World Journal, 2013 (2013), 963625, 12 pp. | DOI | Zbl

[25] O. Kudryavtsev, “Advantages of the Laplace transform approach in pricing first touch digital options in Lévy-driven models”, Bol. Soc. Mat. Mex. (3), 22:2 (2016), 711–731 | DOI | MR | Zbl

[26] O. Kudryavtsev, S. Levendorskiǐ, “Fast and accurate pricing of barrier options under Lévy processes”, Finance Stoch., 13:4 (2009), 531–562 | DOI | MR | Zbl

[27] O. E. Kudryavtsev, S. Levendorskiǐ, Efficient pricing options with barrier and lookback features under Levy processes, Working paper, 2011, 29 pp. | DOI

[28] O. Kudryavtsev, A. Zanette, “Efficient pricing of swing options in Lévy-driven models”, Quant. Finance, 13:4 (2013), 627–635 | DOI | MR | Zbl

[29] A. Kuznetsov, “Wiener–Hopf factorization and distribution of extrema for a family of Lévy processes”, Ann. Appl. Probab., 20:5 (2010), 1801–1830 | DOI | MR | Zbl

[30] A. Kuznetsov, A. E. Kyprianou, J. C. Pardo, K. van Schaik, “A Wiener–Hopf Monte Carlo simulation technique for Lévy processes”, Ann. Appl. Probab., 21:6 (2011), 2171–2190 | DOI | MR | Zbl

[31] C. Lemieux, Monte Carlo and quasi-Monte Carlo sampling, Springer Ser. Statist., Springer, New York, 2009, xvi+373 pp. | DOI | MR | Zbl

[32] S. Levendorskiǐ, “Convergence of price and sensitivities in Carr's randomization approximation globally and near barrier”, SIAM J. Financial Math., 2:1 (2011), 79–111 | DOI | MR | Zbl

[33] S. Levendorskiǐ, “Method of paired contours and pricing barrier options and CDSs of long maturities”, Int. J. Theor. Appl. Finance, 17:5 (2014), 1450033, 58 pp. | DOI | MR | Zbl

[34] S. Levendorskiǐ, “Ultra-fast pricing barrier options and CDSs”, Int. J. Theor. Appl. Finance, 20:5 (2017), 1750033, 27 pp. | DOI | MR | Zbl

[35] E. Lukacs, Characteristic functions, Griffin's Statistical Monographs Courses, 5, Hafner Publishing Co., New York, 1960, 216 pp. | MR | MR | Zbl | Zbl

[36] D. B. Madan, E. Seneta, “The Variance Gamma (V.G.) model for share market returns”, The Journal of Business, 63:4 (1990), 511–524 | DOI

[37] A.-M. Matache, P.-A. Nitsche, C. Schwab, “Wavelet Galerkin pricing of American options on Lévy driven assets”, Quant. Finance, 5:4 (2005), 403–424 | DOI | MR | Zbl

[38] K. Sato, Lévy processes and infinitely divisible distributions, Cambridge Stud. Adv. Math., 68, Cambridge Univ. Press, Cambridge, 1999, xii+486 pp. | MR | Zbl

[39] B. V. Shabat, Introduction à l'analyse complexe, v. 1, 2, Mir, Moscow, 1990, 309 pp., 420 pp. | MR | MR | MR | Zbl | Zbl

[40] A. N. Shiryaev, “Part 1. Facts. Models”, Essentials of stochastic finance, Adv. Ser. Stat. Sci. Appl. Probab., 3, World Sci. Publ., River Edge, NJ, 1999, 2–379 | DOI | MR | Zbl