Keywords: Wiener–Hopf factorization, numerical methods, Monte Carlo methods, the Laplace transform.
@article{TVP_2019_64_2_a1,
author = {O. E. Kudryavtsev},
title = {Approximate {Wiener{\textendash}Hopf} factorization and the {Monte} {Carlo} methods for {L\'evy} processes},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {228--257},
year = {2019},
volume = {64},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2019_64_2_a1/}
}
O. E. Kudryavtsev. Approximate Wiener–Hopf factorization and the Monte Carlo methods for Lévy processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 64 (2019) no. 2, pp. 228-257. http://geodesic.mathdoc.fr/item/TVP_2019_64_2_a1/
[1] J. Abate, W. Whitt, “A unified framework for numerically inverting Laplace transforms”, INFORMS J. Comput., 18:4 (2006), 408–421 | DOI | MR | Zbl
[2] L. Andersen, J. Andreasen, “Jump-diffusion processes: volatility smile fitting and numerical methods for option pricing”, Rev. Deriv. Res., 4:4 (2000), 231–262 | DOI | Zbl
[3] O. E. Barndorff-Nielsen, “Processes of normal inverse Gaussian type”, Finance Stoch., 2:1 (1998), 41–68 | DOI | MR | Zbl
[4] O. E. Barndorff-Nielsen, S. Z. Levendorskii, “Feller processes of normal inverse Gaussian type”, Quant. Finance, 1:3 (2001), 318–331 | DOI | MR | Zbl
[5] M. Boyarchenko, M. de Innocentis, S. Levendorskiǐ, “Prices of barrier and first-touch digital options in Lévy-driven models, near barrier”, Int. J. Theor. Appl. Finance, 14:7 (2011), 1045–1090 | DOI | MR | Zbl
[6] S. I. Boyarchenko, S. Z. Levendorskiǐ, Non-Gaussian Merton–Black–Scholes theory, Adv. Ser. Stat. Sci. Appl. Probab., 9, World Sci. Publ., River Edge, NJ, 2002, xxii+398 pp. | DOI | MR | Zbl
[7] S. Boyarchenko, S. Z. Levendorskiǐ, “American options: the EPV pricing model”, Ann. Finance, 1:3 (2005), 267–292 | DOI | Zbl
[8] S. Boyarchenko, S. Levendorskiǐ, “Efficient Laplace inversion, Wiener–Hopf factorization and pricing lookbacks”, Int. J. Theor. Appl. Finance, 16:3 (2013), 1350011, 40 pp. | DOI | MR | Zbl
[9] S. Boyarchenko, S. Levendorskiǐ, “Efficient pricing of barrier options and credit default swaps in Lévy models with stochastic interest rate”, Math. Finance, 27:4 (2017), 1089–1123 | DOI | MR | Zbl
[10] P. Carr, H. Geman, D. B. Madan, M. Yor, “The fine structure of asset returns: an empirical investigation”, The Journal of Business, 75:2 (2002), 305–332 | DOI
[11] R. Cont, P. Tankov, Financial modelling with jump processes, Chapman Hall/CRC Financ. Math. Ser., 2nd ed., Chapman Hall/CRC, Boca Raton, FL, 2008, 606 pp. | MR | Zbl
[12] R. Cont, E. Voltchkova, “A finite difference scheme for option pricing in jump diffusion and exponential Lévy models”, SIAM J. Numer. Anal., 43:4 (2005), 1596–1626 | DOI | MR | Zbl
[13] G. I. Eskin, Boundary value problems for elliptic pseudodifferential equations, Transl. Math. Monogr., 52, Amer. Math. Soc., Providence, RI, 1981, xi+375 pp. | MR | MR | Zbl | Zbl
[14] A. Ferreiro-Castilla, A. E. Kyprianou, R. Scheichl, G. Suryanarayana, “Multilevel Monte Carlo simulation for Lévy processes based on the Wiener–Hopf factorisation”, Stochastic Process. Appl., 124:2 (2014), 985–1010 | DOI | MR | Zbl
[15] A. Ferreiro-Castilla, K. van Schaik, “Applying the Wiener–Hopf Monte Carlo simulation technique for Lévy processes to path functionals”, J. Appl. Probab., 52:1 (2015), 129–148 | DOI | MR | Zbl
[16] G. Fusai, G. Germano, D. Marazzina, “Spitzer identity, Wiener–Hopf factorization and pricing of discretely monitored exotic options”, European J. Oper. Res., 251:1 (2016), 124–134 | DOI | MR | Zbl
[17] A. Itkin, Pricing derivatives under Lévy models. Modern finite-difference and pseudo-differential operators approach, Pseudo-Differential Operators, 12, Birkhäuser/Springer, New York, 2017, xx+308 pp. | DOI | MR | Zbl
[18] K. R. Jackson, S. Jaimungal, V. Surkov, “Fourier space time-stepping for option pricing with Lévy models”, J. Comput. Finance, 12:2 (2008), 1–29 | DOI | MR | Zbl
[19] Young Shin Kim, S. Rachev, M. L. Bianchi, F. J. Fabozzi, “Computing VaR and AVaR in infinitely divisible distributions”, Probab. Math. Statist., 30:2 (2010), 223–245 | MR | Zbl
[20] S. G. Kou, Hui Wang, “First passage times of a jump diffusion process”, Adv. in Appl. Probab., 35:2 (2003), 504–531 | DOI | MR | Zbl
[21] O. E. Kudryavtsev, “Vychislenie tsen barernykh i amerikanskikh optsionov v modelyakh Levi”, Obozrenie prikladnoi i promyshlennoi matematiki, 17:2 (2010), 210–220
[22] O. Ye. Kudryavtsev, “An efficient numerical method to solve a special class of integro-differential equations relating to the Levy models”, Math. Models Comput. Simul., 3:6 (2011), 706–711 | DOI | MR | Zbl
[23] O. Kudryavtsev, Effektivnye matematicheskie metody vychisleniya tsen optsionov, Palmarium Academic Publishing, Saarbrücken, 2012, 260 pp.
[24] O. Kudryavtsev, “Finite difference methods for option pricing under Lévy processes: Wiener–Hopf factorization approach”, The Scientific World Journal, 2013 (2013), 963625, 12 pp. | DOI | Zbl
[25] O. Kudryavtsev, “Advantages of the Laplace transform approach in pricing first touch digital options in Lévy-driven models”, Bol. Soc. Mat. Mex. (3), 22:2 (2016), 711–731 | DOI | MR | Zbl
[26] O. Kudryavtsev, S. Levendorskiǐ, “Fast and accurate pricing of barrier options under Lévy processes”, Finance Stoch., 13:4 (2009), 531–562 | DOI | MR | Zbl
[27] O. E. Kudryavtsev, S. Levendorskiǐ, Efficient pricing options with barrier and lookback features under Levy processes, Working paper, 2011, 29 pp. | DOI
[28] O. Kudryavtsev, A. Zanette, “Efficient pricing of swing options in Lévy-driven models”, Quant. Finance, 13:4 (2013), 627–635 | DOI | MR | Zbl
[29] A. Kuznetsov, “Wiener–Hopf factorization and distribution of extrema for a family of Lévy processes”, Ann. Appl. Probab., 20:5 (2010), 1801–1830 | DOI | MR | Zbl
[30] A. Kuznetsov, A. E. Kyprianou, J. C. Pardo, K. van Schaik, “A Wiener–Hopf Monte Carlo simulation technique for Lévy processes”, Ann. Appl. Probab., 21:6 (2011), 2171–2190 | DOI | MR | Zbl
[31] C. Lemieux, Monte Carlo and quasi-Monte Carlo sampling, Springer Ser. Statist., Springer, New York, 2009, xvi+373 pp. | DOI | MR | Zbl
[32] S. Levendorskiǐ, “Convergence of price and sensitivities in Carr's randomization approximation globally and near barrier”, SIAM J. Financial Math., 2:1 (2011), 79–111 | DOI | MR | Zbl
[33] S. Levendorskiǐ, “Method of paired contours and pricing barrier options and CDSs of long maturities”, Int. J. Theor. Appl. Finance, 17:5 (2014), 1450033, 58 pp. | DOI | MR | Zbl
[34] S. Levendorskiǐ, “Ultra-fast pricing barrier options and CDSs”, Int. J. Theor. Appl. Finance, 20:5 (2017), 1750033, 27 pp. | DOI | MR | Zbl
[35] E. Lukacs, Characteristic functions, Griffin's Statistical Monographs Courses, 5, Hafner Publishing Co., New York, 1960, 216 pp. | MR | MR | Zbl | Zbl
[36] D. B. Madan, E. Seneta, “The Variance Gamma (V.G.) model for share market returns”, The Journal of Business, 63:4 (1990), 511–524 | DOI
[37] A.-M. Matache, P.-A. Nitsche, C. Schwab, “Wavelet Galerkin pricing of American options on Lévy driven assets”, Quant. Finance, 5:4 (2005), 403–424 | DOI | MR | Zbl
[38] K. Sato, Lévy processes and infinitely divisible distributions, Cambridge Stud. Adv. Math., 68, Cambridge Univ. Press, Cambridge, 1999, xii+486 pp. | MR | Zbl
[39] B. V. Shabat, Introduction à l'analyse complexe, v. 1, 2, Mir, Moscow, 1990, 309 pp., 420 pp. | MR | MR | MR | Zbl | Zbl
[40] A. N. Shiryaev, “Part 1. Facts. Models”, Essentials of stochastic finance, Adv. Ser. Stat. Sci. Appl. Probab., 3, World Sci. Publ., River Edge, NJ, 1999, 2–379 | DOI | MR | Zbl