Exponential inequalities for the distributions of canonical multiple partial sum processes
Teoriâ veroâtnostej i ee primeneniâ, Tome 64 (2019) no. 2, pp. 209-227
Voir la notice de l'article provenant de la source Math-Net.Ru
Exponential inequalities are obtained for the distribution tail of the sup-norm
of a multiple partial sum process
with canonical bounded kernel based on independent and weakly dependent
observations.
The exponent obtained has the correct order.
Keywords:
exponential inequalities, canonical $U$- and $V$-statistics, multiple orthogonal series.
@article{TVP_2019_64_2_a0,
author = {I. S. Borisov and A. A. Bystrov},
title = {Exponential inequalities for the distributions of canonical multiple partial sum processes},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {209--227},
publisher = {mathdoc},
volume = {64},
number = {2},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2019_64_2_a0/}
}
TY - JOUR AU - I. S. Borisov AU - A. A. Bystrov TI - Exponential inequalities for the distributions of canonical multiple partial sum processes JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2019 SP - 209 EP - 227 VL - 64 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_2019_64_2_a0/ LA - ru ID - TVP_2019_64_2_a0 ER -
%0 Journal Article %A I. S. Borisov %A A. A. Bystrov %T Exponential inequalities for the distributions of canonical multiple partial sum processes %J Teoriâ veroâtnostej i ee primeneniâ %D 2019 %P 209-227 %V 64 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/TVP_2019_64_2_a0/ %G ru %F TVP_2019_64_2_a0
I. S. Borisov; A. A. Bystrov. Exponential inequalities for the distributions of canonical multiple partial sum processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 64 (2019) no. 2, pp. 209-227. http://geodesic.mathdoc.fr/item/TVP_2019_64_2_a0/