Exponential inequalities for the distributions of canonical multiple partial sum processes
Teoriâ veroâtnostej i ee primeneniâ, Tome 64 (2019) no. 2, pp. 209-227

Voir la notice de l'article provenant de la source Math-Net.Ru

Exponential inequalities are obtained for the distribution tail of the sup-norm of a multiple partial sum process with canonical bounded kernel based on independent and weakly dependent observations. The exponent obtained has the correct order.
Keywords: exponential inequalities, canonical $U$- and $V$-statistics, multiple orthogonal series.
@article{TVP_2019_64_2_a0,
     author = {I. S. Borisov and A. A. Bystrov},
     title = {Exponential inequalities for the distributions of canonical multiple partial sum processes},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {209--227},
     publisher = {mathdoc},
     volume = {64},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2019_64_2_a0/}
}
TY  - JOUR
AU  - I. S. Borisov
AU  - A. A. Bystrov
TI  - Exponential inequalities for the distributions of canonical multiple partial sum processes
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2019
SP  - 209
EP  - 227
VL  - 64
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2019_64_2_a0/
LA  - ru
ID  - TVP_2019_64_2_a0
ER  - 
%0 Journal Article
%A I. S. Borisov
%A A. A. Bystrov
%T Exponential inequalities for the distributions of canonical multiple partial sum processes
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2019
%P 209-227
%V 64
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2019_64_2_a0/
%G ru
%F TVP_2019_64_2_a0
I. S. Borisov; A. A. Bystrov. Exponential inequalities for the distributions of canonical multiple partial sum processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 64 (2019) no. 2, pp. 209-227. http://geodesic.mathdoc.fr/item/TVP_2019_64_2_a0/