Pathwise decompositions of~Brownian semistationary processes
Teoriâ veroâtnostej i ee primeneniâ, Tome 64 (2019) no. 1, pp. 98-125
Voir la notice de l'article provenant de la source Math-Net.Ru
We find a pathwise decomposition of a certain class
of Brownian semistationary processes ($\mathcal{BSS}$) in terms of
fractional Brownian motions. To do this, we specialize in the case
when the kernel of the $\mathcal{BSS}$ is given by $\varphi_{\alpha}(x)=L(x)x^{\alpha}$
with $\alpha\in(-1/2,0)\cup(0,1/2)$ and $L$ a continuous function
slowly varying at zero. We use this decomposition to study some path
properties and derive Itô's formula for this subclass of $\mathcal{BSS}$
processes.
Keywords:
Brownian semistationary processes, fractional Brownian motion, stationary processes
Mots-clés : Volterra processes, Itô's formula.
Mots-clés : Volterra processes, Itô's formula.
@article{TVP_2019_64_1_a5,
author = {O. Sauri},
title = {Pathwise decompositions {of~Brownian} semistationary processes},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {98--125},
publisher = {mathdoc},
volume = {64},
number = {1},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2019_64_1_a5/}
}
O. Sauri. Pathwise decompositions of~Brownian semistationary processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 64 (2019) no. 1, pp. 98-125. http://geodesic.mathdoc.fr/item/TVP_2019_64_1_a5/