Pathwise decompositions of Brownian semistationary processes
Teoriâ veroâtnostej i ee primeneniâ, Tome 64 (2019) no. 1, pp. 98-125 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We find a pathwise decomposition of a certain class of Brownian semistationary processes ($\mathcal{BSS}$) in terms of fractional Brownian motions. To do this, we specialize in the case when the kernel of the $\mathcal{BSS}$ is given by $\varphi_{\alpha}(x)=L(x)x^{\alpha}$ with $\alpha\in(-1/2,0)\cup(0,1/2)$ and $L$ a continuous function slowly varying at zero. We use this decomposition to study some path properties and derive Itô's formula for this subclass of $\mathcal{BSS}$ processes.
Keywords: Brownian semistationary processes, fractional Brownian motion, stationary processes
Mots-clés : Volterra processes, Itô's formula.
@article{TVP_2019_64_1_a5,
     author = {O. Sauri},
     title = {Pathwise decompositions {of~Brownian} semistationary processes},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {98--125},
     year = {2019},
     volume = {64},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2019_64_1_a5/}
}
TY  - JOUR
AU  - O. Sauri
TI  - Pathwise decompositions of Brownian semistationary processes
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2019
SP  - 98
EP  - 125
VL  - 64
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TVP_2019_64_1_a5/
LA  - ru
ID  - TVP_2019_64_1_a5
ER  - 
%0 Journal Article
%A O. Sauri
%T Pathwise decompositions of Brownian semistationary processes
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2019
%P 98-125
%V 64
%N 1
%U http://geodesic.mathdoc.fr/item/TVP_2019_64_1_a5/
%G ru
%F TVP_2019_64_1_a5
O. Sauri. Pathwise decompositions of Brownian semistationary processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 64 (2019) no. 1, pp. 98-125. http://geodesic.mathdoc.fr/item/TVP_2019_64_1_a5/

[1] E. Alòs, O. Mazet, D. Nualart, “Stochastic calculus with respect to Gaussian processes”, Ann. Probab., 29:2 (2001), 766–801 | DOI | MR | Zbl

[2] O. E. Barndorff-Nielsen, Notes on the gamma kernel, Research report No. 3, Thiele Centre, Aarhus Univ., 2012, 12 pp. http://math.au.dk/en/research/publications/publication-series/publication/publid/946/

[3] O. E. Barndorff-Nielsen, A. Basse-O'Connor, “Quasi Ornstein–Uhlenbeck processes”, Bernoulli, 17:3 (2011), 916–941 | DOI | MR | Zbl

[4] O. E. Barndorff-Nielsen, F. E. Benth, A. E. D. Veraart, “Ambit processes and stochastic partial differential equations”, Advanced mathematical methods for finance, Springer, Heidelberg, 2011, 35–74 | DOI | MR | Zbl

[5] O. E. Barndorff-Nielsen, F. E. Benth, A. E. D. Veraart, “Recent advances in ambit stochastics with a view towards tempo-spatial stochastic volatility/intermittency”, Advances in mathematics of finance, Banach Center Publ., 104, Polish Acad. Sci. Inst. Math., Warsaw, 2015, 25–60 | DOI | MR | Zbl

[6] O. E. Barndorff-Nielsen, F. E. Benth, J. Pedersen, A. E. D. Veraart, “On stochastic integration for volatility modulated Lévy-driven Volterra processes”, Stochastic Process. Appl., 124:1 (2014), 812–847 | DOI | MR | Zbl

[7] O. E. Barndorff-Nielsen, F. E. Benth, A. E. D. Veraart, “Modelling energy spot prices by volatility modulated Lévy-driven Volterra processes”, Bernoulli, 19:3 (2013), 803–845 | DOI | MR | Zbl

[8] O. E. Barndorff-Nielsen, F. E. Benth, A. E. D. Veraart, “Modelling electricity futures by ambit fields”, Adv. in Appl. Probab., 46:3 (2014), 719–745 | DOI | MR | Zbl

[9] O. E. Barndorff-Nielsen, J. M. Corcuera, M. Podolskij, “Multipower variation for Brownian semistationary processes”, Bernoulli, 17:4 (2011), 1159–1194 | DOI | MR | Zbl

[10] O. E. Barndorff-Nielsen, J. M. Corcuera, M. Podolskij, “Limit theorems for functionals of higher order differences of Brownian semi-stationary processes”, Prokhorov and contemporary probability theory, Springer Proc. Math. Stat., 33, Springer, Heidelberg, 2013, 69–96 | DOI | MR | Zbl

[11] O. E. Barndorff-Nielsen, E. Hedevang, J. Schmiegel, B. Szozda, “Some recent developments in ambit stochastics”, Stochastics of environmental and financial economics (Centre of Advanced Study, Oslo, 2014–2015), Springer Proc. Math. Stat., 138, Springer, Cham, 2016, 3–25 | DOI | MR | Zbl

[12] O. E. Barndorff-Nielsen, J. Schmiegel, “Brownian semistationary processes and volatility/intermittency”, Advanced financial modelling, Radon Ser. Comput. Appl. Math., 8, Walter de Gruyter, Berlin, 2009, 1–25 | DOI | MR | Zbl

[13] A. Basse-O'Connor, “Some properties of a class of continuous time moving average processes”, Proceedings of the 18th EYSM (Osijek, 2013), Univ. Osijek, 2013, 59–64 https://www.mathos.unios.hr/eysm18/publications.html

[14] A. Basse-O'Connor, S.-E. Graversen, J. Pedersen, “Stochastic integration on the real line”, Teoriya veroyatn. i ee primen., 58:2 (2013), 355–380 ; Theory Probab. Appl., 58:2 (2014), 193–215 | DOI | Zbl | DOI | MR

[15] A. Basse-O'Connor, S.-E. Graversen, J. Pedersen, “Martingale-type processes indexed by the real line”, ALEA Lat. Am. J. Probab. Math. Stat., 7 (2010), 117–137 | MR | Zbl

[16] A. Basse-O'Connor, S.-E. Graversen, J. Pedersen, “Multiparameter processes with stationary increments: spectral representation and integration”, Electron. J. Probab., 17 (2012), 74, 21 pp. | DOI | MR | Zbl

[17] A. Basse-O'Connor, C. Heinrich, M Podolskij, “On limit theory for Lévy semi-stationary processes”, Bernoulli, 24:4A (2018), 3117–3146 | DOI | MR | Zbl

[18] A. Basse-O'Connor, R. Lachièze-Rey, M. Podolskij, “Power variation for a class of stationary increments Lévy driven moving averages”, Ann. Probab., 45:6B (2017), 4477–4528 | DOI | MR | Zbl

[19] M. Bennedsen, Rough electricity: a new fractal multi-factor model of electricity spot prices, CREATES res. paper 2015-42, Aarhus Univ., Aarhus, 2015, 33 pp. http://econ.au.dk/research/publications/creates-research-papers/2015/

[20] M. Bennedsen, A. Lunde, M. S. Pakkanen, “Hybrid scheme for Brownian semistationary processes”, Finance Stoch., 21:4 (2017), 931–965 | DOI | MR | Zbl

[21] M. Bennedsen, A. Lunde, M. S. Pakkanen, Decoupling the short- and long-term behavior of stochastic volatility, 2016, arXiv: 1610.00332v1

[22] F. E. Benth, H. Eyjolfsson, A. E. D. Veraart, “Approximating Lévy semistationary processes via Fourier methods in the context of power markets”, SIAM J. Financial Math., 5:1 (2014), 71–98 | DOI | MR | Zbl

[23] P. Cheridito, H. Kawaguchi, M. Maejima, “Fractional Ornstein–Uhlenbeck processes”, Electron. J. Probab., 8 (2003), 3, 14 pp. | DOI | MR | Zbl

[24] J. M. Corcuera, E. Hedevang, M. S. Pakkanen, M. Podolskij, “Asymptotic theory for Brownian semi-stationary processes with application to turbulence”, Stochastic Process. Appl., 123:7 (2013), 2552–2574 | DOI | MR | Zbl

[25] L. Coutin, “An introduction to (stochastic) calculus with respect to fractional Brownian motion”, Séminaire de Probabilités XL, Lecture Notes in Math., 1899, Springer, Berlin, 2007, 3–65 | DOI | MR | Zbl

[26] K. Gärtner, M. Podolskij, “On non-standard limits of Brownian semi-stationary processes”, Stochastic Process. Appl., 125:2 (2015), 653–677 | DOI | MR | Zbl

[27] P. Guttorp, T. Gneiting, On the Whittle–Matérn correlation family, NRCSE Technical Report Series, NRCSE-TRS No. 081, 2005, 8 pp. http://www.nrcse.washington.edu/research/reports.html

[28] M. Jolis, “The Wiener integral with respect to second order processes with stationary increments”, J. Math. Anal. Appl., 366:2 (2010), 607–620 | DOI | MR | Zbl

[29] J. U. Márquez, J. Schmiegel, “Modelling turbulent time series by ${BSS}$-processes”, The fascination of probability, statistics and their applications, Springer, Cham, 2016, 29–52 | DOI | MR | Zbl

[30] O. Mocioalca, F. Viens, “Skorohod integration and stochastic calculus beyond the fractional Brownian scale”, J. Funct. Anal., 222:2 (2005), 385–434 | DOI | MR | Zbl

[31] D. Nualart, The Malliavin calculus and related topics, Probab. Appl. (N. Y.), 2nd ed., Springer-Verlag, Berlin, 2006, xiv+382 pp. | DOI | MR | Zbl

[32] M. S. Pakkanen, “Brownian semistationary processes and conditional full support”, Int. J. Theor. Appl. Finance, 14:4 (2011), 579–586 | DOI | MR | Zbl

[33] M. S. Pakkanen, “Limit theorems for power variations of ambit fields driven by white noise”, Stochastic Process. Appl., 124:5 (2014), 1942–1973 | DOI | MR | Zbl

[34] J. Pedersen, O. Sauri, “On Lévy semistationary processes with a gamma kernel”, XI symposium on probability and stochastic processes, Progr. Probab., 69, Birkhäuser/Springer, Cham, 2015, 217–239 | DOI | MR

[35] V. Pipiras, M. S. Taqqu, “Integration questions related to fractional Brownian motion”, Probab. Theory Related Fields, 118:2 (2000), 251–291 | DOI | MR | Zbl

[36] M. Podolskij, “Ambit fields: survey and new challenges”, XI symposium on probability and stochastic processes, Progr. Probab., 69, Birkhäuser/Springer, Cham, 2015, 241–279 | DOI | MR

[37] M. Veraar, “The stochastic Fubini theorem revisited”, Stochastics, 84:4 (2012), 543–551 | DOI | MR | Zbl

[38] A. E. D. Veraart, L. A. M. Veraart, “Modelling electricity day-ahead prices by multivariate Lévy semistationary processes”, Quantitative energy finance, Springer, New York, 2014, 157–188 | DOI | MR

[39] L. C. Young, “An inequality of the Hölder type, connected with Stieltjes integration”, Acta Math., 67:1 (1936), 251–282 | DOI | MR | Zbl