Approximation of the evolution operator by expectations of
Teoriâ veroâtnostej i ee primeneniâ, Tome 64 (2019) no. 1, pp. 17-35

Voir la notice de l'article provenant de la source Math-Net.Ru

A method of probabilistic approximation of the operator $e^{-itH}$, where $H = -\frac{1}{2}\,\frac{d^2}{dx^2}+V(x)$, $V\in L_\infty(\mathbf R)$, in the strong operator topology is proposed. The approximating operators have the form of expectations of functionals of sums of independent identically distributed random variables.
Mots-clés : evolution equations, Feynman–Kac formula.
Keywords: limit theorems
@article{TVP_2019_64_1_a1,
     author = {I. A. Ibragimov and N. V. Smorodina and M. M. Faddeev},
     title = {Approximation of the evolution operator by expectations of},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {17--35},
     publisher = {mathdoc},
     volume = {64},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2019_64_1_a1/}
}
TY  - JOUR
AU  - I. A. Ibragimov
AU  - N. V. Smorodina
AU  - M. M. Faddeev
TI  - Approximation of the evolution operator by expectations of
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2019
SP  - 17
EP  - 35
VL  - 64
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2019_64_1_a1/
LA  - ru
ID  - TVP_2019_64_1_a1
ER  - 
%0 Journal Article
%A I. A. Ibragimov
%A N. V. Smorodina
%A M. M. Faddeev
%T Approximation of the evolution operator by expectations of
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2019
%P 17-35
%V 64
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2019_64_1_a1/
%G ru
%F TVP_2019_64_1_a1
I. A. Ibragimov; N. V. Smorodina; M. M. Faddeev. Approximation of the evolution operator by expectations of. Teoriâ veroâtnostej i ee primeneniâ, Tome 64 (2019) no. 1, pp. 17-35. http://geodesic.mathdoc.fr/item/TVP_2019_64_1_a1/