Keywords: limit theorems
@article{TVP_2019_64_1_a1,
author = {I. A. Ibragimov and N. V. Smorodina and M. M. Faddeev},
title = {Approximation of the evolution operator by expectations of},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {17--35},
year = {2019},
volume = {64},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2019_64_1_a1/}
}
TY - JOUR AU - I. A. Ibragimov AU - N. V. Smorodina AU - M. M. Faddeev TI - Approximation of the evolution operator by expectations of JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2019 SP - 17 EP - 35 VL - 64 IS - 1 UR - http://geodesic.mathdoc.fr/item/TVP_2019_64_1_a1/ LA - ru ID - TVP_2019_64_1_a1 ER -
I. A. Ibragimov; N. V. Smorodina; M. M. Faddeev. Approximation of the evolution operator by expectations of. Teoriâ veroâtnostej i ee primeneniâ, Tome 64 (2019) no. 1, pp. 17-35. http://geodesic.mathdoc.fr/item/TVP_2019_64_1_a1/
[1] A. D. Wentzell, A course in the theory of stochastic processes, McGraw-Hill International Book Co., New York, 1981, x+304 pp. | MR | MR | Zbl | Zbl
[2] N. Dunford, J. T. Schwartz, Linear operators, v. I, Pure Appl. Math., 7, General theory, Interscience Publishers, Inc., New York; Interscience Publishers, Ltd., London, 1958, xiv+858 pp. | MR | MR | Zbl
[3] H. Doss, “Sur une resolution stochastique de l'equation de Schrödinger à coefficients analytiques”, Comm. Math. Phys., 73:3 (1980), 247–264 | DOI | MR | Zbl
[4] J. Glimm, A. Jaffe, Quantum physics. A functional integral point of view, 2nd ed., Springer-Verlag, New York, 1987, xxii+535 pp. | DOI | MR | MR | Zbl | Zbl
[5] I. A. Ibragimov, N. V. Smorodina, M. M. Faddeev, “On a limit theorem related to probabilistic representation of solution to the Cauchy problem for the Schrödinger equation”, J. Math. Sci. (N. Y.), 229:6 (2018), 702–713 | DOI | MR | Zbl
[6] M. M. Faddeev, I. A. Ibragimov, N. V. Smorodina, “A stochastic interpretation of the Cauchy problem solution for the equation $\partial_t u=(\sigma^2/2)\Delta u +V(x)u$ with complex $\sigma$”, Markov Process. Related Fields, 22:2 (2016), 203–226 | MR | Zbl
[7] I. A. Ibragimov, N. V. Smorodina, M. M. Faddeev, “Probabilistic approximation of the evolution operator”, Funct. Anal. Appl., 52:2 (2018), 101–112 | DOI | DOI | MR | Zbl
[8] T. Kato, Perturbation theory for linear operators, Grundlehren Math. Wiss., 132, Springer-Verlag, New York, 1966, xix+592 pp. | MR | MR | Zbl | Zbl
[9] J. F. C. Kingman, Poisson processes, Oxford Stud. Probab., 3, The Clarendon Press, Oxford Univ. Press, New York, 1993, viii+104 pp. | MR | Zbl
[10] M. Reed, B. Simon, Methods of modern mathematical physics, v. II, Fourier analysis, self-adjointness, Academic Press, New York–London, 1975, xv+361 pp. | MR | MR | Zbl
[11] O. G. Smolyanov, E. T. Shavgulidze, Kontinualnye integraly, 2-e pererab. i susch. dop. izd., Lenand, M., 2015, 336 pp. | MR | Zbl
[12] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Math. Ser., 30, Princeton Univ. Press, Princeton, NJ, 1970, xiv+290 pp. | MR | MR | Zbl | Zbl