Approximation of the evolution operator by expectations of
Teoriâ veroâtnostej i ee primeneniâ, Tome 64 (2019) no. 1, pp. 17-35 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A method of probabilistic approximation of the operator $e^{-itH}$, where $H = -\frac{1}{2}\,\frac{d^2}{dx^2}+V(x)$, $V\in L_\infty(\mathbf R)$, in the strong operator topology is proposed. The approximating operators have the form of expectations of functionals of sums of independent identically distributed random variables.
Mots-clés : evolution equations, Feynman–Kac formula.
Keywords: limit theorems
@article{TVP_2019_64_1_a1,
     author = {I. A. Ibragimov and N. V. Smorodina and M. M. Faddeev},
     title = {Approximation of the evolution operator by expectations of},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {17--35},
     year = {2019},
     volume = {64},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2019_64_1_a1/}
}
TY  - JOUR
AU  - I. A. Ibragimov
AU  - N. V. Smorodina
AU  - M. M. Faddeev
TI  - Approximation of the evolution operator by expectations of
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2019
SP  - 17
EP  - 35
VL  - 64
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TVP_2019_64_1_a1/
LA  - ru
ID  - TVP_2019_64_1_a1
ER  - 
%0 Journal Article
%A I. A. Ibragimov
%A N. V. Smorodina
%A M. M. Faddeev
%T Approximation of the evolution operator by expectations of
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2019
%P 17-35
%V 64
%N 1
%U http://geodesic.mathdoc.fr/item/TVP_2019_64_1_a1/
%G ru
%F TVP_2019_64_1_a1
I. A. Ibragimov; N. V. Smorodina; M. M. Faddeev. Approximation of the evolution operator by expectations of. Teoriâ veroâtnostej i ee primeneniâ, Tome 64 (2019) no. 1, pp. 17-35. http://geodesic.mathdoc.fr/item/TVP_2019_64_1_a1/

[1] A. D. Wentzell, A course in the theory of stochastic processes, McGraw-Hill International Book Co., New York, 1981, x+304 pp. | MR | MR | Zbl | Zbl

[2] N. Dunford, J. T. Schwartz, Linear operators, v. I, Pure Appl. Math., 7, General theory, Interscience Publishers, Inc., New York; Interscience Publishers, Ltd., London, 1958, xiv+858 pp. | MR | MR | Zbl

[3] H. Doss, “Sur une resolution stochastique de l'equation de Schrödinger à coefficients analytiques”, Comm. Math. Phys., 73:3 (1980), 247–264 | DOI | MR | Zbl

[4] J. Glimm, A. Jaffe, Quantum physics. A functional integral point of view, 2nd ed., Springer-Verlag, New York, 1987, xxii+535 pp. | DOI | MR | MR | Zbl | Zbl

[5] I. A. Ibragimov, N. V. Smorodina, M. M. Faddeev, “On a limit theorem related to probabilistic representation of solution to the Cauchy problem for the Schrödinger equation”, J. Math. Sci. (N. Y.), 229:6 (2018), 702–713 | DOI | MR | Zbl

[6] M. M. Faddeev, I. A. Ibragimov, N. V. Smorodina, “A stochastic interpretation of the Cauchy problem solution for the equation $\partial_t u=(\sigma^2/2)\Delta u +V(x)u$ with complex $\sigma$”, Markov Process. Related Fields, 22:2 (2016), 203–226 | MR | Zbl

[7] I. A. Ibragimov, N. V. Smorodina, M. M. Faddeev, “Probabilistic approximation of the evolution operator”, Funct. Anal. Appl., 52:2 (2018), 101–112 | DOI | DOI | MR | Zbl

[8] T. Kato, Perturbation theory for linear operators, Grundlehren Math. Wiss., 132, Springer-Verlag, New York, 1966, xix+592 pp. | MR | MR | Zbl | Zbl

[9] J. F. C. Kingman, Poisson processes, Oxford Stud. Probab., 3, The Clarendon Press, Oxford Univ. Press, New York, 1993, viii+104 pp. | MR | Zbl

[10] M. Reed, B. Simon, Methods of modern mathematical physics, v. II, Fourier analysis, self-adjointness, Academic Press, New York–London, 1975, xv+361 pp. | MR | MR | Zbl

[11] O. G. Smolyanov, E. T. Shavgulidze, Kontinualnye integraly, 2-e pererab. i susch. dop. izd., Lenand, M., 2015, 336 pp. | MR | Zbl

[12] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Math. Ser., 30, Princeton Univ. Press, Princeton, NJ, 1970, xiv+290 pp. | MR | MR | Zbl | Zbl