@article{TVP_2019_64_1_a0,
author = {Yu. E. Gliklikh and T. A. Shchichko},
title = {On the completeness of stochastic flows generated by equations with current velocities},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {3--16},
year = {2019},
volume = {64},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2019_64_1_a0/}
}
TY - JOUR AU - Yu. E. Gliklikh AU - T. A. Shchichko TI - On the completeness of stochastic flows generated by equations with current velocities JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2019 SP - 3 EP - 16 VL - 64 IS - 1 UR - http://geodesic.mathdoc.fr/item/TVP_2019_64_1_a0/ LA - ru ID - TVP_2019_64_1_a0 ER -
Yu. E. Gliklikh; T. A. Shchichko. On the completeness of stochastic flows generated by equations with current velocities. Teoriâ veroâtnostej i ee primeneniâ, Tome 64 (2019) no. 1, pp. 3-16. http://geodesic.mathdoc.fr/item/TVP_2019_64_1_a0/
[1] E. Nelson, “Derivation of the Schrödinger equation from Newtonian mechanics”, Phys. Rev., 150:4 (1966), 1079–1085 | DOI
[2] E. Nelson, Dynamical theories of Brownian motion, Princeton Univ. Press, Princeton, NJ, 1967, iii+142 pp. | MR | Zbl
[3] E. Nelson, Quantum fluctuations, Princeton Ser. Phys., Princeton Univ. Press, Princeton, NJ, 1985, viii+147 pp. | MR | Zbl
[4] K. R. Parthasarathy, Introduction to probability and measure, The Macmillan Co. of India, Ltd., Delhi, 1977, xii+312 pp. | MR | MR | Zbl | Zbl
[5] S. V. Azarina, Yu. E. Gliklikh, “Differential inclusions with mean derivatives”, Dynam. Systems Appl., 16:1 (2007), 49–71 | MR | Zbl
[6] Yu. E. Gliklikh, Global and stochastic analysis with applications to mathematical physics, Theoret. Math. Phys., Springer-Verlag London, Ltd., London, 2011, xxiv+436 pp. | DOI | MR | Zbl
[7] J. Cresson, S. Darses, “Stochastic embedding of dynamical systems”, J. Math. Phys., 48:7 (2007), 072703, 54 pp. | DOI | MR | Zbl
[8] U. G. Haussmann, E. Pardoux, “Time reversal of diffusions”, Ann. Probab., 14:4 (1986), 1188–1205 | DOI | MR | Zbl
[9] H. Kunita, Stochastic flows and stochastic differential equations, Cambridge Stud. Adv. Math., 24, Cambridge Univ. Press, Cambridge, 1990, xiv+346 pp. | MR | Zbl
[10] K. D. Elworthy, Stochastic differential equations on manifolds, London Math. Soc. Lecture Note Ser., 70, Cambridge Univ. Press, Cambridge–New York, 1982, xiii+326 pp. | MR | Zbl
[11] S. V. Azarina, Yu. E. Gliklikh, “On the solvability of nonautonomous stochastic differential equations with current velocities”, Math. Notes, 100:1 (2016), 3–10 | DOI | DOI | MR | Zbl
[12] Yu. E. Gliklikh, “Necessary and sufficient conditions for global-in-time existence of solutions of ordinary, stochastic, and parabolic differential equations”, Abstr. Appl. Anal., 2006 (2006), 39786, 17 pp. | DOI | MR | Zbl
[13] L. Schwartz, “Processus de Markov et désintégrations régulières”, Ann. Inst. Fourier (Grenoble), 27:3 (1977), 211–277 | DOI | MR | Zbl
[14] L. Schwartz, “Le semi-groupe d'une diffusion en liaison avec les trajectories”, Séminaire de probabilités XXIII, Lecture Notes in Math., 1372, 1989, 326–342 | DOI | MR | Zbl