On the completeness of stochastic flows generated by equations with current velocities
Teoriâ veroâtnostej i ee primeneniâ, Tome 64 (2019) no. 1, pp. 3-16 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Sufficient conditions as well as necessary and sufficient ones are found for the completeness of the stochastic flow generated by equations with the so-called current velocities (Nelson's symmetric mean derivatives). A characteristic property of such equations is that the solvability of the Cauchy problem (the existence of orbits of the flow) is proved only under the assumption that the initial value is a random variable such that its distribution density is smooth and nowhere vanishes.
Keywords: mean derivatives, current velocities, stochastic flows, completeness, continuity at infinity.
@article{TVP_2019_64_1_a0,
     author = {Yu. E. Gliklikh and T. A. Shchichko},
     title = {On the completeness of stochastic flows generated by equations with current velocities},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {3--16},
     year = {2019},
     volume = {64},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2019_64_1_a0/}
}
TY  - JOUR
AU  - Yu. E. Gliklikh
AU  - T. A. Shchichko
TI  - On the completeness of stochastic flows generated by equations with current velocities
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2019
SP  - 3
EP  - 16
VL  - 64
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TVP_2019_64_1_a0/
LA  - ru
ID  - TVP_2019_64_1_a0
ER  - 
%0 Journal Article
%A Yu. E. Gliklikh
%A T. A. Shchichko
%T On the completeness of stochastic flows generated by equations with current velocities
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2019
%P 3-16
%V 64
%N 1
%U http://geodesic.mathdoc.fr/item/TVP_2019_64_1_a0/
%G ru
%F TVP_2019_64_1_a0
Yu. E. Gliklikh; T. A. Shchichko. On the completeness of stochastic flows generated by equations with current velocities. Teoriâ veroâtnostej i ee primeneniâ, Tome 64 (2019) no. 1, pp. 3-16. http://geodesic.mathdoc.fr/item/TVP_2019_64_1_a0/

[1] E. Nelson, “Derivation of the Schrödinger equation from Newtonian mechanics”, Phys. Rev., 150:4 (1966), 1079–1085 | DOI

[2] E. Nelson, Dynamical theories of Brownian motion, Princeton Univ. Press, Princeton, NJ, 1967, iii+142 pp. | MR | Zbl

[3] E. Nelson, Quantum fluctuations, Princeton Ser. Phys., Princeton Univ. Press, Princeton, NJ, 1985, viii+147 pp. | MR | Zbl

[4] K. R. Parthasarathy, Introduction to probability and measure, The Macmillan Co. of India, Ltd., Delhi, 1977, xii+312 pp. | MR | MR | Zbl | Zbl

[5] S. V. Azarina, Yu. E. Gliklikh, “Differential inclusions with mean derivatives”, Dynam. Systems Appl., 16:1 (2007), 49–71 | MR | Zbl

[6] Yu. E. Gliklikh, Global and stochastic analysis with applications to mathematical physics, Theoret. Math. Phys., Springer-Verlag London, Ltd., London, 2011, xxiv+436 pp. | DOI | MR | Zbl

[7] J. Cresson, S. Darses, “Stochastic embedding of dynamical systems”, J. Math. Phys., 48:7 (2007), 072703, 54 pp. | DOI | MR | Zbl

[8] U. G. Haussmann, E. Pardoux, “Time reversal of diffusions”, Ann. Probab., 14:4 (1986), 1188–1205 | DOI | MR | Zbl

[9] H. Kunita, Stochastic flows and stochastic differential equations, Cambridge Stud. Adv. Math., 24, Cambridge Univ. Press, Cambridge, 1990, xiv+346 pp. | MR | Zbl

[10] K. D. Elworthy, Stochastic differential equations on manifolds, London Math. Soc. Lecture Note Ser., 70, Cambridge Univ. Press, Cambridge–New York, 1982, xiii+326 pp. | MR | Zbl

[11] S. V. Azarina, Yu. E. Gliklikh, “On the solvability of nonautonomous stochastic differential equations with current velocities”, Math. Notes, 100:1 (2016), 3–10 | DOI | DOI | MR | Zbl

[12] Yu. E. Gliklikh, “Necessary and sufficient conditions for global-in-time existence of solutions of ordinary, stochastic, and parabolic differential equations”, Abstr. Appl. Anal., 2006 (2006), 39786, 17 pp. | DOI | MR | Zbl

[13] L. Schwartz, “Processus de Markov et désintégrations régulières”, Ann. Inst. Fourier (Grenoble), 27:3 (1977), 211–277 | DOI | MR | Zbl

[14] L. Schwartz, “Le semi-groupe d'une diffusion en liaison avec les trajectories”, Séminaire de probabilités XXIII, Lecture Notes in Math., 1372, 1989, 326–342 | DOI | MR | Zbl