@article{TVP_2018_63_4_a8,
author = {M. Liu and V. A. Vatutin},
title = {Reduced critical branching processes for small populations},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {795--807},
year = {2018},
volume = {63},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2018_63_4_a8/}
}
M. Liu; V. A. Vatutin. Reduced critical branching processes for small populations. Teoriâ veroâtnostej i ee primeneniâ, Tome 63 (2018) no. 4, pp. 795-807. http://geodesic.mathdoc.fr/item/TVP_2018_63_4_a8/
[1] K. B. Athreya, “Coalescence in the recent past in rapidly growing populations”, Stochastic Process. Appl., 122:11 (2012), 3757–3766 | DOI | MR | Zbl
[2] K. B. Athreya, “Coalescence in critical and subcritical Galton–Watson branching processes”, J. Appl. Probab., 49:3 (2012), 627–638 | DOI | MR | Zbl
[3] K. B. Athreya, P. E. Ney, Branching processes, Grundlehren Math. Wiss., 196, Springer-Verlag, New York–Heidelberg, 1972, xi+287 pp. | MR | Zbl
[4] R. Durrett, “The genealogy of critical branching processes”, Stochastic Process. Appl., 8:1 (1978), 101–116 | DOI | MR | Zbl
[5] K. Fleischmann, U. Prehn, “Ein Grenzwertsatz für subkritische Verzweigungsprozesse mit eindlich vielen Typen von Teilchen”, Math. Nachr., 64 (1974), 357–362 | DOI | MR | Zbl
[6] K. Fleischmann, R. Siegmund-Schultze, “The structure of reduced critical Galton–Watson processes”, Math. Nachr., 79 (1977), 233–241 | DOI | MR | Zbl
[7] S. C. Harris, S. G. G. Johnston, M. I. Roberts, The coalescent structure of continuous-time Galton–Watson trees, 2017, arXiv: 1703.00299
[8] S. G. G. Johnston, Coalescence in supercritical and subcritical continuous-time Galton–Watson trees, 2017, arXiv: 1709.08500v1
[9] A. Lambert, “Coalescence times for the branching process”, Adv. in Appl. Probab., 35:4 (2003), 1071–1089 | DOI | MR | Zbl
[10] A. Lambert, “Probabilistic models for the (sub)tree(s) of life”, Braz. J. Probab. Stat., 31:3 (2017), 415–475 | DOI | MR | Zbl
[11] A. N. Lagerås, S. Sagitov, “Reduced branching processes with very heavy tails”, J. Appl. Probab., 45:1 (2008), 190–200 | DOI | MR | Zbl
[12] V. Le, “Coalescence times for the Bienaymé–Galton–Watson process”, J. Appl. Probab., 51:1 (2014), 209–218 | DOI | MR | Zbl
[13] S. V. Nagaev, V. I. Vakhtel, “On the local limit theorem for a critical Galton–Watson process”, Theory Probab. Appl., 50:3 (2006), 400–419 | DOI | DOI | MR | Zbl
[14] N. O'Connell, “The genealogy of branching processes and the age of our most recent common ancestor”, Adv. in Appl. Probab., 27:2 (1995), 418–442 | DOI | MR | Zbl
[15] E. Seneta, “The Galton–Watson process with mean one”, J. Appl. Probab., 4:3 (1967), 489–495 | DOI | MR | Zbl
[16] B. A. Sewastjanow, Verzweigungsprozesse, Math. Lehrbücher Monogr. II. Abt. Math. Monogr., 34, Akademie-Verlag, Berlin, 1974, xi+326 pp. | MR | MR | Zbl | Zbl
[17] V. A. Vatutin, E. E. Dyakonova, “Limit theorems for reduced branching processes in a random environment”, Theory Probab. Appl., 52:2 (2008), 277–302 | DOI | DOI | MR | Zbl
[18] V. A. Vatutin, E. E. Dyakonova, “Decomposable branching processes with a fixed extinction moment”, Proc. Steklov Inst. Math., 290:1 (2015), 103–124 | DOI | DOI | MR | Zbl
[19] A. M. Zubkov, “Limiting distributions of the distance to the closest common ancestor”, Theory Probab. Appl., 20:3 (1975), 602–612 | DOI | MR | Zbl