Limit theorems for random exponentials: the bounded support case
Teoriâ veroâtnostej i ee primeneniâ, Tome 63 (2018) no. 4, pp. 779-794
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we study the asymptotic distributions, under appropriate
normalization, of the sum $S_t = \sum_{i=1}^{N_t} e^{t X_i}$, the maximum $M_t =
\max_{i\in\{1,2,\dots,N_t\}} e^{tX_i}$, and the $l_t$ norm $R_t=S_t^{1/t}$, when
$N_t\to\infty$ as $t\to\infty$ and $X_1,X_2,\dots$ are independent and
identically distributed random variables in the maximum domain of attraction of
the reverse-Weibull distribution.
Keywords:
random exponentials, exponential sums, random energy model.
@article{TVP_2018_63_4_a7,
author = {M. Grabchak and S. A. Molchanov},
title = {Limit theorems for random exponentials: the bounded support case},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {779--794},
publisher = {mathdoc},
volume = {63},
number = {4},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2018_63_4_a7/}
}
TY - JOUR AU - M. Grabchak AU - S. A. Molchanov TI - Limit theorems for random exponentials: the bounded support case JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2018 SP - 779 EP - 794 VL - 63 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_2018_63_4_a7/ LA - ru ID - TVP_2018_63_4_a7 ER -
M. Grabchak; S. A. Molchanov. Limit theorems for random exponentials: the bounded support case. Teoriâ veroâtnostej i ee primeneniâ, Tome 63 (2018) no. 4, pp. 779-794. http://geodesic.mathdoc.fr/item/TVP_2018_63_4_a7/