Mots-clés : stable distribution
@article{TVP_2018_63_4_a6,
author = {D. Denisov and A. Sakhanenko and V. Wachtel},
title = {First-passage times over moving boundaries for asymptotically stable walks},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {755--778},
year = {2018},
volume = {63},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2018_63_4_a6/}
}
TY - JOUR AU - D. Denisov AU - A. Sakhanenko AU - V. Wachtel TI - First-passage times over moving boundaries for asymptotically stable walks JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2018 SP - 755 EP - 778 VL - 63 IS - 4 UR - http://geodesic.mathdoc.fr/item/TVP_2018_63_4_a6/ LA - ru ID - TVP_2018_63_4_a6 ER -
D. Denisov; A. Sakhanenko; V. Wachtel. First-passage times over moving boundaries for asymptotically stable walks. Teoriâ veroâtnostej i ee primeneniâ, Tome 63 (2018) no. 4, pp. 755-778. http://geodesic.mathdoc.fr/item/TVP_2018_63_4_a6/
[1] V. I. Afanasyev, J. Geiger, G. Kersting, V. A. Vatutin, “Criticality for branching processes in random environment”, Ann. Probab., 33:2 (2005), 645–673 | DOI | MR | Zbl
[2] F. Aurzada, T. Kramm, “The first passage time problem over a moving boundary for asymptotically stable Lévy processes”, J. Theoret. Probab., 29:3 (2016), 737–760 | DOI | MR | Zbl
[3] F. Caravenna, L. Chaumont, “Invariance principles for random walks conditioned to stay positive”, Ann. Inst. Henri Poincaré Probab. Stat., 44:1 (2008), 170–190 | DOI | MR | Zbl
[4] F. Caravenna, R. Doney, Local large deviations and the strong renewal theorem, 2016, arXiv: 1612.07635
[5] D. Denisov, A. Sakhanenko, V. Wachtel, “First-passage times for random walks with nonidentically distributed increments”, Ann. Probab., 46:6 (2018), 3313–3350 ; arXiv: 1611.00493 | DOI | MR
[6] V. I. Wachtel, D. E. Denisov, “An exact asymptotics for the moment of crossing a curved boundary by an asymptotically stable random walk”, Theory Probab. Appl., 60:3 (2016), 481–500 | DOI | DOI | MR | Zbl
[7] R. A. Doney, “Conditional limit theorems for asymptotically stable random walks”, Z. Wahrsch. Verw. Gebiete, 70:3 (1985), 351–360 | DOI | MR | Zbl
[8] R. A. Doney, “Local behaviour of first passage probabilities”, Probab. Theory Related Fields, 152:3-4 (2012), 559–588 | DOI | MR | Zbl
[9] R. A. Doney, “On the asymptotic behaviour of first passage times for transient random walk”, Probab. Theory Related Fields, 81:2 (1989), 239–246 | DOI | MR | Zbl
[10] W. Feller, An introduction to probability theory and its applications, v. II, Wiley Ser. Probab. Math. Statist., 2nd ed., John Wiley Sons, Inc., New York–London–Sydney, 1971, xxiv+669 pp. | MR | MR | Zbl | Zbl
[11] P. E. Greenwood, A. A. Novikov, “One-sided boundary crossing for processes with independent increments”, Teoriya veroyatn. i ee primen., 31:2 (1986), 266–277 ; Theory Probab. Appl., 31:2 (1987), 221–232 | MR | Zbl | DOI
[12] A. A. Mogul'skii, E. A. Pecherskii, “Time of first entry into a region with curved boundary”, Sib. Math. J., 19:4 (1978), 582–595 | DOI | MR | Zbl
[13] V. A. Vatutin, V. Wachtel, “Local probabilities for random walks conditioned to stay positive”, Probab. Theory Related Fields, 143:1-2 (2009), 177–217 | DOI | MR | Zbl
[14] V. Wachtel, “Local limit theorem for the maximum of asymptotically stable random walks”, Probab. Theory Related Fields, 152:3-4 (2012), 407–424 | DOI | MR | Zbl