First-passage times over moving boundaries for asymptotically stable walks
Teoriâ veroâtnostej i ee primeneniâ, Tome 63 (2018) no. 4, pp. 755-778 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $\{S_n,\, n\geq1\}$ be a random walk with independent and identically distributed increments, and let $\{g_n,\,n\geq1\}$ be a sequence of real numbers. Let $T_g$ denote the first time when $S_n$ leaves $(g_n,\infty)$. Assume that the random walk is oscillating and asymptotically stable, that is, there exists a sequence $\{c_n,\,n\geq1\}$ such that $S_n/c_n$ converges to a stable law. In this paper we determine the tail behavior of $T_g$ for all oscillating asymptotically stable walks and all boundary sequences satisfying $g_n=o(c_n)$. Furthermore, we prove that the rescaled random walk conditioned to stay above the boundary up to time $n$ converges, as $n\to\infty$, towards the stable meander.
Keywords: random walk, first-passage time, overshoot, moving boundary.
Mots-clés : stable distribution
@article{TVP_2018_63_4_a6,
     author = {D. Denisov and A. Sakhanenko and V. Wachtel},
     title = {First-passage times over moving boundaries for asymptotically stable walks},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {755--778},
     year = {2018},
     volume = {63},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2018_63_4_a6/}
}
TY  - JOUR
AU  - D. Denisov
AU  - A. Sakhanenko
AU  - V. Wachtel
TI  - First-passage times over moving boundaries for asymptotically stable walks
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2018
SP  - 755
EP  - 778
VL  - 63
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_2018_63_4_a6/
LA  - ru
ID  - TVP_2018_63_4_a6
ER  - 
%0 Journal Article
%A D. Denisov
%A A. Sakhanenko
%A V. Wachtel
%T First-passage times over moving boundaries for asymptotically stable walks
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2018
%P 755-778
%V 63
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_2018_63_4_a6/
%G ru
%F TVP_2018_63_4_a6
D. Denisov; A. Sakhanenko; V. Wachtel. First-passage times over moving boundaries for asymptotically stable walks. Teoriâ veroâtnostej i ee primeneniâ, Tome 63 (2018) no. 4, pp. 755-778. http://geodesic.mathdoc.fr/item/TVP_2018_63_4_a6/

[1] V. I. Afanasyev, J. Geiger, G. Kersting, V. A. Vatutin, “Criticality for branching processes in random environment”, Ann. Probab., 33:2 (2005), 645–673 | DOI | MR | Zbl

[2] F. Aurzada, T. Kramm, “The first passage time problem over a moving boundary for asymptotically stable Lévy processes”, J. Theoret. Probab., 29:3 (2016), 737–760 | DOI | MR | Zbl

[3] F. Caravenna, L. Chaumont, “Invariance principles for random walks conditioned to stay positive”, Ann. Inst. Henri Poincaré Probab. Stat., 44:1 (2008), 170–190 | DOI | MR | Zbl

[4] F. Caravenna, R. Doney, Local large deviations and the strong renewal theorem, 2016, arXiv: 1612.07635

[5] D. Denisov, A. Sakhanenko, V. Wachtel, “First-passage times for random walks with nonidentically distributed increments”, Ann. Probab., 46:6 (2018), 3313–3350 ; arXiv: 1611.00493 | DOI | MR

[6] V. I. Wachtel, D. E. Denisov, “An exact asymptotics for the moment of crossing a curved boundary by an asymptotically stable random walk”, Theory Probab. Appl., 60:3 (2016), 481–500 | DOI | DOI | MR | Zbl

[7] R. A. Doney, “Conditional limit theorems for asymptotically stable random walks”, Z. Wahrsch. Verw. Gebiete, 70:3 (1985), 351–360 | DOI | MR | Zbl

[8] R. A. Doney, “Local behaviour of first passage probabilities”, Probab. Theory Related Fields, 152:3-4 (2012), 559–588 | DOI | MR | Zbl

[9] R. A. Doney, “On the asymptotic behaviour of first passage times for transient random walk”, Probab. Theory Related Fields, 81:2 (1989), 239–246 | DOI | MR | Zbl

[10] W. Feller, An introduction to probability theory and its applications, v. II, Wiley Ser. Probab. Math. Statist., 2nd ed., John Wiley Sons, Inc., New York–London–Sydney, 1971, xxiv+669 pp. | MR | MR | Zbl | Zbl

[11] P. E. Greenwood, A. A. Novikov, “One-sided boundary crossing for processes with independent increments”, Teoriya veroyatn. i ee primen., 31:2 (1986), 266–277 ; Theory Probab. Appl., 31:2 (1987), 221–232 | MR | Zbl | DOI

[12] A. A. Mogul'skii, E. A. Pecherskii, “Time of first entry into a region with curved boundary”, Sib. Math. J., 19:4 (1978), 582–595 | DOI | MR | Zbl

[13] V. A. Vatutin, V. Wachtel, “Local probabilities for random walks conditioned to stay positive”, Probab. Theory Related Fields, 143:1-2 (2009), 177–217 | DOI | MR | Zbl

[14] V. Wachtel, “Local limit theorem for the maximum of asymptotically stable random walks”, Probab. Theory Related Fields, 152:3-4 (2012), 407–424 | DOI | MR | Zbl