On a characterization theorem for probability distributions on discrete Abelian groups
Teoriâ veroâtnostej i ee primeneniâ, Tome 63 (2018) no. 4, pp. 730-754 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $X$ be a countable discrete Abelian group containing no elements of order 2, $\alpha$ be an automorphism of $X$, and $\xi_1$ and $\xi_2$ be independent random variables with values in the group $X$ and having distributions $\mu_1$ and $\mu_2$. The main result of the present paper is as follows. The symmetry of the conditional distribution of the linear form $L_2 = \xi_1 + \alpha\xi_2$ given $L_1 = \xi_1 + \xi_2$ implies that $\mu_j$ are shifts of the Haar distribution of a finite subgroup of $X$ if and only if the automorphism $\alpha$ satisfies the condition $\operatorname{Ker}(I+\alpha)=\{0\}$. This theorem is an analogue, for discrete Abelian groups, of the well-known Heyde theorem, where a Gaussian distribution on the real line is characterized by the symmetry of the conditional distribution of one linear form of independent random variable given the other. We also prove some generalizations of this theorem.
Keywords: conditional distribution, Haar distribution, discrete Abelian group.
@article{TVP_2018_63_4_a5,
     author = {G. M. Feldman},
     title = {On a characterization theorem for probability distributions on discrete {Abelian} groups},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {730--754},
     year = {2018},
     volume = {63},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2018_63_4_a5/}
}
TY  - JOUR
AU  - G. M. Feldman
TI  - On a characterization theorem for probability distributions on discrete Abelian groups
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2018
SP  - 730
EP  - 754
VL  - 63
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_2018_63_4_a5/
LA  - ru
ID  - TVP_2018_63_4_a5
ER  - 
%0 Journal Article
%A G. M. Feldman
%T On a characterization theorem for probability distributions on discrete Abelian groups
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2018
%P 730-754
%V 63
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_2018_63_4_a5/
%G ru
%F TVP_2018_63_4_a5
G. M. Feldman. On a characterization theorem for probability distributions on discrete Abelian groups. Teoriâ veroâtnostej i ee primeneniâ, Tome 63 (2018) no. 4, pp. 730-754. http://geodesic.mathdoc.fr/item/TVP_2018_63_4_a5/

[1] C. C. Heyde, “Characterization of the normal low by the symmetry of a certain conditional distribution”, Sankhyā Ser. A, 32 (1970), 115–118 | MR | Zbl

[2] A. M. Kagan, Yu. V. Linnik, C. R. Rao, Characterization problems in mathematical statistics, Wiley Ser. Probab. Math. Statist., John Wiley Sons, New York–London–Sydney, 1973, xii+499 pp. | MR | MR | Zbl | Zbl

[3] G. M. Feldman, “On the Heyde theorem for finite Abelian groups”, J. Theoret. Probab., 17:4 (2004), 929–941 | DOI | MR | Zbl

[4] M. V. Myronyuk, G. M. Feldman, “On a characterization theorem on finite Abelian groups”, Sib. Math. J., 46:2 (2005), 315–324 | DOI | MR | Zbl

[5] G. M. Feldman, “On a characterization theorem for locally compact Abelian groups”, Probab. Theory Related Fields, 133:3 (2005), 345–357 | DOI | MR | Zbl

[6] G. M. Feldman, “On the Heyde theorem for discrete Abelian groups”, Studia Math., 177:1 (2006), 67–79 | DOI | MR | Zbl

[7] G. M. Feldman, “The Heyde theorem for locally compact Abelian groups”, J. Funct. Anal., 258:12 (2010), 3977–3987 | DOI | MR | Zbl

[8] M. Myronyuk, “Heyde's characterization theorem for discrete abelian groups”, J. Aust. Math. Soc., 88:1 (2010), 93–102 | DOI | MR | Zbl

[9] G. M. Feldman, “On a characterization of convolutions of Gaussian and Haar distributions”, Math. Nachr., 286:4 (2013), 340–348 | DOI | MR | Zbl

[10] M. Myronyuk, “The Heyde theorem on $\mathbf a$-adic solenoids”, Colloq. Math., 132:2 (2013), 195–210 | DOI | MR | Zbl

[11] G. Feldman, “On a characterization theorem for the group of $p$-adic numbers”, Publ. Math. Debrecen, 87:1-2 (2015), 147–166 | DOI | MR | Zbl

[12] G. M. Feldman, “On the Heyde theorem for some locally compact Abelian groups”, Dokl. Math., 95:2 (2017), 147–150 | DOI | DOI | MR | Zbl

[13] G. M. Feldman, “Heyde's characterization theorem for some locally compact Abelian groups”, Theory Probab. Appl., 62:3 (2018), 399–412 | DOI | DOI | MR | Zbl

[14] G. Feldman, Functional equations and characterization problems on locally compact Abelian groups, EMS Tracts Math., 5, Eur. Math. Soc., Zürich, 2008, xii+256 pp. | DOI | MR | Zbl

[15] G. M. Feldman, Kharakterizatsionnye zadachi matematicheskoi statistiki na lokalno kompaktnykh abelevykh gruppakh, Naukova dumka, Kiev, 2010, 431 pp.

[16] K. R. Parthasarathy, Probability measures on metric spaces, Probab. Math. Statist., 3, Academic Press, Inc., New York–London, 1967, xi+276 pp. | MR | Zbl

[17] E. Hewitt, K. A. Ross, Abstract harmonic analysis, v. I, Grundlehren Math. Wiss., 115, Academic Press, Inc., Publishers, New York; Springer-Verlag, Berlin–Göttingen–Heidelberg, 1963, viii+519 pp. | DOI | MR | MR | Zbl

[18] G. M. Feldman, “More on the Skitovich–Darmois theorem for finite Abelian groups”, Theory Probab. Appl., 45:3 (2001), 507–511 | DOI | DOI | MR | Zbl

[19] L. Fuchs, Infinite Abelian groups, v. I, Pure Appl. Math., 36, Academic Press, New York–London, 1970, 1973, xi+290 pp. | MR | MR | Zbl | Zbl