@article{TVP_2018_63_4_a5,
author = {G. M. Feldman},
title = {On a characterization theorem for probability distributions on discrete {Abelian} groups},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {730--754},
year = {2018},
volume = {63},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2018_63_4_a5/}
}
G. M. Feldman. On a characterization theorem for probability distributions on discrete Abelian groups. Teoriâ veroâtnostej i ee primeneniâ, Tome 63 (2018) no. 4, pp. 730-754. http://geodesic.mathdoc.fr/item/TVP_2018_63_4_a5/
[1] C. C. Heyde, “Characterization of the normal low by the symmetry of a certain conditional distribution”, Sankhyā Ser. A, 32 (1970), 115–118 | MR | Zbl
[2] A. M. Kagan, Yu. V. Linnik, C. R. Rao, Characterization problems in mathematical statistics, Wiley Ser. Probab. Math. Statist., John Wiley Sons, New York–London–Sydney, 1973, xii+499 pp. | MR | MR | Zbl | Zbl
[3] G. M. Feldman, “On the Heyde theorem for finite Abelian groups”, J. Theoret. Probab., 17:4 (2004), 929–941 | DOI | MR | Zbl
[4] M. V. Myronyuk, G. M. Feldman, “On a characterization theorem on finite Abelian groups”, Sib. Math. J., 46:2 (2005), 315–324 | DOI | MR | Zbl
[5] G. M. Feldman, “On a characterization theorem for locally compact Abelian groups”, Probab. Theory Related Fields, 133:3 (2005), 345–357 | DOI | MR | Zbl
[6] G. M. Feldman, “On the Heyde theorem for discrete Abelian groups”, Studia Math., 177:1 (2006), 67–79 | DOI | MR | Zbl
[7] G. M. Feldman, “The Heyde theorem for locally compact Abelian groups”, J. Funct. Anal., 258:12 (2010), 3977–3987 | DOI | MR | Zbl
[8] M. Myronyuk, “Heyde's characterization theorem for discrete abelian groups”, J. Aust. Math. Soc., 88:1 (2010), 93–102 | DOI | MR | Zbl
[9] G. M. Feldman, “On a characterization of convolutions of Gaussian and Haar distributions”, Math. Nachr., 286:4 (2013), 340–348 | DOI | MR | Zbl
[10] M. Myronyuk, “The Heyde theorem on $\mathbf a$-adic solenoids”, Colloq. Math., 132:2 (2013), 195–210 | DOI | MR | Zbl
[11] G. Feldman, “On a characterization theorem for the group of $p$-adic numbers”, Publ. Math. Debrecen, 87:1-2 (2015), 147–166 | DOI | MR | Zbl
[12] G. M. Feldman, “On the Heyde theorem for some locally compact Abelian groups”, Dokl. Math., 95:2 (2017), 147–150 | DOI | DOI | MR | Zbl
[13] G. M. Feldman, “Heyde's characterization theorem for some locally compact Abelian groups”, Theory Probab. Appl., 62:3 (2018), 399–412 | DOI | DOI | MR | Zbl
[14] G. Feldman, Functional equations and characterization problems on locally compact Abelian groups, EMS Tracts Math., 5, Eur. Math. Soc., Zürich, 2008, xii+256 pp. | DOI | MR | Zbl
[15] G. M. Feldman, Kharakterizatsionnye zadachi matematicheskoi statistiki na lokalno kompaktnykh abelevykh gruppakh, Naukova dumka, Kiev, 2010, 431 pp.
[16] K. R. Parthasarathy, Probability measures on metric spaces, Probab. Math. Statist., 3, Academic Press, Inc., New York–London, 1967, xi+276 pp. | MR | Zbl
[17] E. Hewitt, K. A. Ross, Abstract harmonic analysis, v. I, Grundlehren Math. Wiss., 115, Academic Press, Inc., Publishers, New York; Springer-Verlag, Berlin–Göttingen–Heidelberg, 1963, viii+519 pp. | DOI | MR | MR | Zbl
[18] G. M. Feldman, “More on the Skitovich–Darmois theorem for finite Abelian groups”, Theory Probab. Appl., 45:3 (2001), 507–511 | DOI | DOI | MR | Zbl
[19] L. Fuchs, Infinite Abelian groups, v. I, Pure Appl. Math., 36, Academic Press, New York–London, 1970, 1973, xi+290 pp. | MR | MR | Zbl | Zbl