Sequential testing of two hypotheses for a stationary Ornstein–Uhlenbeck process
Teoriâ veroâtnostej i ee primeneniâ, Tome 63 (2018) no. 4, pp. 713-729 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The present paper is concerned with the conditionally extremal settings of the sequential testing problem of two simple hypotheses about a parameter responsible for the local return rate of a stationary Ornstein–Uhlenbeck process to its mean value. Minimization of the Kullback–Leibler divergence is considered as an optimality test. An asymptotically optimal scheme is put forward, first, in the case when the error probabilities of the first and the second kind tend to zero, and, second, in the case when the tested parameters go off to infinity but the distance between them is fixed.
Keywords: sequential analysis, hypothesis testing, variational statement, fixed error probability formulation, conditionally extremal settings, SPRT, stationary Ornstein–Uhlenbeck process.
@article{TVP_2018_63_4_a4,
     author = {D. I. Lisovskii and A. N. Shiryaev},
     title = {Sequential testing of two hypotheses for a stationary {Ornstein{\textendash}Uhlenbeck} process},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {713--729},
     year = {2018},
     volume = {63},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2018_63_4_a4/}
}
TY  - JOUR
AU  - D. I. Lisovskii
AU  - A. N. Shiryaev
TI  - Sequential testing of two hypotheses for a stationary Ornstein–Uhlenbeck process
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2018
SP  - 713
EP  - 729
VL  - 63
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_2018_63_4_a4/
LA  - ru
ID  - TVP_2018_63_4_a4
ER  - 
%0 Journal Article
%A D. I. Lisovskii
%A A. N. Shiryaev
%T Sequential testing of two hypotheses for a stationary Ornstein–Uhlenbeck process
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2018
%P 713-729
%V 63
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_2018_63_4_a4/
%G ru
%F TVP_2018_63_4_a4
D. I. Lisovskii; A. N. Shiryaev. Sequential testing of two hypotheses for a stationary Ornstein–Uhlenbeck process. Teoriâ veroâtnostej i ee primeneniâ, Tome 63 (2018) no. 4, pp. 713-729. http://geodesic.mathdoc.fr/item/TVP_2018_63_4_a4/

[1] M. Abramowitz, I. A. Stegun (eds.), Handbook of mathematical functions with formulas, graphs, and mathematical tables, National Bureau of Standards Applied Mathematics Series, 55, 10th printing, with corr., Superintendent of Documents, U.S. Government Printing Office, Washington, DC, 1972, xiv+1046 pp. | MR | MR | Zbl | Zbl

[2] L. I. Galtchouk, “Optimality of the Wald SPRT for processes with continuous time parameter”, MODA 6 — Advances in model-oriented design and analysis (Puchberg/Schneeberg, 2001), Contrib. Statist., Physica, Heidelberg, 2001, 97–110 | MR

[3] R. S. Liptser, A. N. Shiryaev, Statistics of random processes, v. 1, 2, Appl. Math., 5, 6, 2nd rev. and exp. ed., Springer-Verlag, Berlin, 2001, x+394 pp., xv+402 pp. | MR | MR | Zbl | Zbl

[4] A. N. Shiryaev, Optimal stopping rules, Appl. Math., 8, Springer-Verlag, New York–Heidelberg, 1978, x+217 pp. | MR | MR | Zbl | Zbl

[5] D. E. Varberg, “On equivalence of Gaussian measures”, Pacific J. Math., 11:2 (1961), 751–762 | DOI | MR | Zbl

[6] A. I. Yashin, “On a problem of sequential hypotesis testing”, Theory Probab. Appl., 28:1 (1984), 157–165 | DOI | MR | Zbl