Bayesian sequential testing problem for a Brownian bridge
Teoriâ veroâtnostej i ee primeneniâ, Tome 63 (2018) no. 4, pp. 683-712 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The present paper gives a solution to the Bayesian sequential testing problem of two simple hypotheses about the mean of a Brownian bridge. The method of the proof is based on reducing the sequential analysis problem to the optimal stopping problem for a strong Markov posterior probability process. The key idea in solving the above problem is the application of the one-to-one Kolmogorov time-space transformation, which enables one to consider, instead of the optimal stopping problem on a finite time horizon for a time-inhomogeneous diffusion process, an optimal stopping problem on an infinite time horizon for a homogeneous diffusion process with a slightly more complicated risk functional. The continuation and stopping sets are determined by two continuous boundaries, which constitute a unique solution of a system of two nonlinear integral equations.
Keywords: sequential analysis, hypothesis testing problem, optimal stopping problem, Brownian bridge, Kolmogorov time-space transformation.
@article{TVP_2018_63_4_a3,
     author = {D. I. Lisovskii},
     title = {Bayesian sequential testing problem for a {Brownian} bridge},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {683--712},
     year = {2018},
     volume = {63},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2018_63_4_a3/}
}
TY  - JOUR
AU  - D. I. Lisovskii
TI  - Bayesian sequential testing problem for a Brownian bridge
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2018
SP  - 683
EP  - 712
VL  - 63
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_2018_63_4_a3/
LA  - ru
ID  - TVP_2018_63_4_a3
ER  - 
%0 Journal Article
%A D. I. Lisovskii
%T Bayesian sequential testing problem for a Brownian bridge
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2018
%P 683-712
%V 63
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_2018_63_4_a3/
%G ru
%F TVP_2018_63_4_a3
D. I. Lisovskii. Bayesian sequential testing problem for a Brownian bridge. Teoriâ veroâtnostej i ee primeneniâ, Tome 63 (2018) no. 4, pp. 683-712. http://geodesic.mathdoc.fr/item/TVP_2018_63_4_a3/

[1] I. Karatzas, S. E. Shreve, Brownian motion and stochastic calculus, Grad. Texts in Math., 113, 2nd ed., Springer-Verlag, New York, 1998, xxiii+470 pp. | DOI | MR | Zbl

[2] A. N. Shiryaev, Optimal stopping rules, Appl. Math., 8, Springer-Verlag, New York–Heidelberg, 1978, x+217 pp. | MR | MR | Zbl | Zbl

[3] A. Tartakovsky, I. Nikiforov, M. Basseville, Sequential analysis. Hypothesis testing and changepoint detection, Monogr. Statist. Appl. Probab., 136, CRC Press, Boca Raton, FL, 2015, xxiv+579 pp. | MR | Zbl

[4] R. S. Liptser, A. N. Shiryaev, Statistics of random processes, v. 1, 2, Appl. Math., 5, 6, 2nd rev. and exp. ed., Springer-Verlag, Berlin, 2001, xvi+427 pp., xv+402 pp. | MR | MR | MR | Zbl | Zbl

[5] L. C. G. Rogers, D. Williams, Diffusions, Markov processes and martingales, v. 2, Cambridge Math. Lib., Itô calculus, Reprint of the 2nd ed., Cambridge Univ. Press, Cambridge, 2000, xiv+480 pp. | DOI | MR | Zbl

[6] A. Kolmogoroff, “Über die analytischen Methoden in der Wahrscheinlichkeitsrechnung”, Math. Ann., 104:1 (1931), 415–458 | DOI | MR | Zbl

[7] G. Peskir, A. Shiryaev, Optimal stopping and free-boundary problems, Lectures Math. ETH Zürich, Birkhäuser Verlag, Basel, 2006, xxii+500 pp. | MR | Zbl

[8] P. V. Gapeev, G. Peskir, “The Wiener sequential testing problem with finite horizon”, Stoch. Stoch. Rep., 76:1 (2004), 59–75 | DOI | MR | Zbl

[9] G. Peskir, “A change-of-variable formula with local time on curves”, J. Theoret. Probab., 18:3 (2005), 499–535 | DOI | MR | Zbl

[10] B. I. Grigelionis, A. N. Shiryaev, “On Stefan's problem and optimal stopping rules for Markov processes”, Theory Probab. Appl., 11:4 (1966), 541–558 | DOI | MR | Zbl

[11] D. Revuz, M. Yor, Continuous martingales and Brownian motion, Grundlehren Math. Wiss., 293, 3rd ed., Springer-Verlag, Berlin, 1999, xiv+602 pp. | DOI | MR | Zbl

[12] O. Kallenberg, Foundations of modern probability, Probab. Appl. (N. Y.), Springer-Verlag, New York, 1997, xii+523 pp. | MR | Zbl