@article{TVP_2018_63_4_a3,
author = {D. I. Lisovskii},
title = {Bayesian sequential testing problem for a {Brownian} bridge},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {683--712},
year = {2018},
volume = {63},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2018_63_4_a3/}
}
D. I. Lisovskii. Bayesian sequential testing problem for a Brownian bridge. Teoriâ veroâtnostej i ee primeneniâ, Tome 63 (2018) no. 4, pp. 683-712. http://geodesic.mathdoc.fr/item/TVP_2018_63_4_a3/
[1] I. Karatzas, S. E. Shreve, Brownian motion and stochastic calculus, Grad. Texts in Math., 113, 2nd ed., Springer-Verlag, New York, 1998, xxiii+470 pp. | DOI | MR | Zbl
[2] A. N. Shiryaev, Optimal stopping rules, Appl. Math., 8, Springer-Verlag, New York–Heidelberg, 1978, x+217 pp. | MR | MR | Zbl | Zbl
[3] A. Tartakovsky, I. Nikiforov, M. Basseville, Sequential analysis. Hypothesis testing and changepoint detection, Monogr. Statist. Appl. Probab., 136, CRC Press, Boca Raton, FL, 2015, xxiv+579 pp. | MR | Zbl
[4] R. S. Liptser, A. N. Shiryaev, Statistics of random processes, v. 1, 2, Appl. Math., 5, 6, 2nd rev. and exp. ed., Springer-Verlag, Berlin, 2001, xvi+427 pp., xv+402 pp. | MR | MR | MR | Zbl | Zbl
[5] L. C. G. Rogers, D. Williams, Diffusions, Markov processes and martingales, v. 2, Cambridge Math. Lib., Itô calculus, Reprint of the 2nd ed., Cambridge Univ. Press, Cambridge, 2000, xiv+480 pp. | DOI | MR | Zbl
[6] A. Kolmogoroff, “Über die analytischen Methoden in der Wahrscheinlichkeitsrechnung”, Math. Ann., 104:1 (1931), 415–458 | DOI | MR | Zbl
[7] G. Peskir, A. Shiryaev, Optimal stopping and free-boundary problems, Lectures Math. ETH Zürich, Birkhäuser Verlag, Basel, 2006, xxii+500 pp. | MR | Zbl
[8] P. V. Gapeev, G. Peskir, “The Wiener sequential testing problem with finite horizon”, Stoch. Stoch. Rep., 76:1 (2004), 59–75 | DOI | MR | Zbl
[9] G. Peskir, “A change-of-variable formula with local time on curves”, J. Theoret. Probab., 18:3 (2005), 499–535 | DOI | MR | Zbl
[10] B. I. Grigelionis, A. N. Shiryaev, “On Stefan's problem and optimal stopping rules for Markov processes”, Theory Probab. Appl., 11:4 (1966), 541–558 | DOI | MR | Zbl
[11] D. Revuz, M. Yor, Continuous martingales and Brownian motion, Grundlehren Math. Wiss., 293, 3rd ed., Springer-Verlag, Berlin, 1999, xiv+602 pp. | DOI | MR | Zbl
[12] O. Kallenberg, Foundations of modern probability, Probab. Appl. (N. Y.), Springer-Verlag, New York, 1997, xii+523 pp. | MR | Zbl