Persistence probabilities and a decorrelation inequality for the Rosenblatt process and Hermite processes
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 63 (2018) no. 4, pp. 817-826
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We study persistence probabilities of Hermite processes. As a tool, we derive
a general decorrelation inequality for the Rosenblatt process, which is
reminiscent of Slepian's lemma for Gaussian processes or the FKG inequality
and which may be of independent interest. This allows us to compute the
persistence exponent for the Rosenblatt process. For general Hermite
processes, we derive upper and lower bounds for the persistence probabilities
with the conjectured persistence exponent, but with nonmatching boundaries.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
long-range dependence, random walk, Hermite process,
Rosenblatt process, correlation inequality, first passage times.
Mots-clés : persistence
                    
                  
                
                
                Mots-clés : persistence
@article{TVP_2018_63_4_a10,
     author = {F. Aurzada and C. M\"onch},
     title = {Persistence probabilities and a decorrelation inequality for the {Rosenblatt} process and {Hermite} processes},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {817--826},
     publisher = {mathdoc},
     volume = {63},
     number = {4},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2018_63_4_a10/}
}
                      
                      
                    TY - JOUR AU - F. Aurzada AU - C. Mönch TI - Persistence probabilities and a decorrelation inequality for the Rosenblatt process and Hermite processes JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2018 SP - 817 EP - 826 VL - 63 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_2018_63_4_a10/ LA - en ID - TVP_2018_63_4_a10 ER -
%0 Journal Article %A F. Aurzada %A C. Mönch %T Persistence probabilities and a decorrelation inequality for the Rosenblatt process and Hermite processes %J Teoriâ veroâtnostej i ee primeneniâ %D 2018 %P 817-826 %V 63 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/TVP_2018_63_4_a10/ %G en %F TVP_2018_63_4_a10
F. Aurzada; C. Mönch. Persistence probabilities and a decorrelation inequality for the Rosenblatt process and Hermite processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 63 (2018) no. 4, pp. 817-826. http://geodesic.mathdoc.fr/item/TVP_2018_63_4_a10/
