Mots-clés : persistence
@article{TVP_2018_63_4_a10,
author = {F. Aurzada and C. M\"onch},
title = {Persistence probabilities and a decorrelation inequality for the {Rosenblatt} process and {Hermite} processes},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {817--826},
year = {2018},
volume = {63},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TVP_2018_63_4_a10/}
}
TY - JOUR AU - F. Aurzada AU - C. Mönch TI - Persistence probabilities and a decorrelation inequality for the Rosenblatt process and Hermite processes JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2018 SP - 817 EP - 826 VL - 63 IS - 4 UR - http://geodesic.mathdoc.fr/item/TVP_2018_63_4_a10/ LA - en ID - TVP_2018_63_4_a10 ER -
%0 Journal Article %A F. Aurzada %A C. Mönch %T Persistence probabilities and a decorrelation inequality for the Rosenblatt process and Hermite processes %J Teoriâ veroâtnostej i ee primeneniâ %D 2018 %P 817-826 %V 63 %N 4 %U http://geodesic.mathdoc.fr/item/TVP_2018_63_4_a10/ %G en %F TVP_2018_63_4_a10
F. Aurzada; C. Mönch. Persistence probabilities and a decorrelation inequality for the Rosenblatt process and Hermite processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 63 (2018) no. 4, pp. 817-826. http://geodesic.mathdoc.fr/item/TVP_2018_63_4_a10/
[1] F. Aurzada, “On the one-sided exit problem for fractional Brownian motion”, Electron. Commun. Probab., 16 (2011), 392–404 | DOI | MR | Zbl
[2] F. Aurzada, C. Baumgarten, “Persistence of fractional Brownian motion with moving boundaries and applications”, J. Phys. A, 46:12 (2013), 125007, 12 pp. | DOI | MR | Zbl
[3] F. Aurzada, S. Dereich, “Universality of the asymptotics of the one-sided exit problem for integrated processes”, Ann. Inst. Henri Poincaré Probab. Stat., 49:1 (2013), 236–251 | DOI | MR | Zbl
[4] F. Aurzada, N. Guillotin-Plantard, F. Pène, “Persistence probabilities for stationary increment processes”, Stochastic Process. Appl., 128:5 (2018), 1750–1771 | DOI | MR | Zbl
[5] F. Aurzada, T. Simon, “Persistence probabilities and exponents”, Lévy matters V, Lecture Notes in Math., 2149, Springer, Cham, 2015, 183–221 | DOI | MR | Zbl
[6] A. J. Bray, S. N. Majumdar, G. Schehr, “Persistence and first-passage properties in nonequilibrium systems”, Adv. Phys., 62:3 (2013), 225–361 | DOI
[7] F. Castell, N. Guillotin-Plantard, F. Pène, B. Schapira, “On the one-sided exit problem for stable processes in random scenery”, Electron. Commun. Probab., 18 (2013), 33, 7 pp. | DOI | MR | Zbl
[8] F. Castell, N. Guillotin-Plantard, F. Watbled, “Persistence exponent for random processes in Brownian scenery”, ALEA Lat. Am. J. Probab. Math. Stat., 13 (2016), 79–94 | MR | Zbl
[9] Mingzhou Ding, Weiming Yang, “Distribution of the first return time in fractional Brownian motion and its application to the study of on-off intermittency”, Phys. Rev. E, 52:1 (1995), 207–213 | DOI
[10] R. L. Dobrushin, P. Major, “Non-central limit theorems for non-linear functionals of Gaussian fields”, Z. Wahrscheinlichkeitstheor. verw. Geb., 50:1 (1979), 27–52 | DOI | MR | Zbl
[11] R. Latała, D. Matlak, “Royen's proof of the Gaussian correlation inequality”, Geometric aspects of functional analysis, Lecture Notes in Math., 2169, Springer, Cham, 2017, 265–275 | DOI | MR | Zbl
[12] Zhengyan Lin, Zhidong Bai, Probability inequalities, Springer, Berlin; Beijing, Science Press, 2011, vii+181 pp. | DOI | Zbl
[13] S. N. Majumdar, “Persistence in nonequilibrium systems”, Current Science, 77:3 (1999), 370–375
[14] S. N. Majumdar, “Persistence of a particle in the Matheron–de Marsily velocity field”, Phys. Rev. E, 68:5 (2003), 050101(R) | DOI
[15] S. N. Majumdar, D. Dhar, “Persistence in a stationary time series”, Phys. Rev. E, 64:4 (2001), 046123 | DOI
[16] G. M. Molchan, “Maximum of a fractional Brownian motion: probabilities of small values”, Comm. Math. Phys., 205:1 (1999), 97–111 | DOI | MR | Zbl
[17] G. Molchan, “Unilateral small deviations of processes related to the fractional Brownian motion”, Stochastic Process. Appl., 118:11 (2008), 2085–2097 | DOI | MR | Zbl
[18] G. Molchan, “Survival exponents for some Gaussian processes”, Int. J. Stoch. Anal., 2012 (2012), 137271, 20 pp. | MR | Zbl
[19] G. Molchan, “The inviscid Burgers equation with fractional Brownian initial data: the dimension of regular Lagrangian points”, J. Stat. Phys., 167:6 (2017), 1546–1554 | DOI | MR | Zbl
[20] G. Molchan, “Survival exponents for fractional Brownian motion with multivariate time”, ALEA Lat. Am. J. Probab. Math. Stat., 14:1 (2017), 1–7 | MR | Zbl
[21] T. Mori, H. Oodaira, “The law of the iterated logarithm for self-similar processes represented by multiple Wiener integrals”, Probab. Theory Relat. Fields, 71:3 (1986), 367–391 | DOI | MR | Zbl
[22] P. E. Oliveira, Asymptotics for associated random variables, Springer, Heidelberg, 2012, x+194 pp. | DOI | MR | Zbl
[23] G. Oshanin, A. Rosso, G. Schehr, “Anomalous fluctuations of currents in Sinai-type random chains with strongly correlated disorder”, Phys. Rev. Lett., 110:10 (2013), 100602 | DOI
[24] S. Redner, “Survival probability in a random velocity field”, Phys. Rev. E, 56:5 (1997), 4967–4972 | DOI
[25] T. Royen, “A simple proof of the Gaussian correlation conjecture extended to some multivariate gamma distributions”, Far East J. Theor. Stat., 48:2 (2014), 139–145 | MR | Zbl
[26] D. Slepian, “The one-sided barrier problem for Gaussian noise”, Bell System Tech. J., 41:2 (1962), 463–501 | DOI | MR
[27] M. S. Taqqu, “Weak convergence to fractional Brownian motion and to the Rosenblatt process”, Z. Wahrscheinlichkeitstheor. verw. Geb., 31:4 (1975), 287–302 | DOI | MR | Zbl
[28] M. S. Taqqu, “Convergence of integrated processes of arbitrary Hermite rank”, Z. Wahrscheinlichkeitstheor. verw. Geb., 50:1 (1979), 53–83 | DOI | MR | Zbl
[29] M. S. Veillette, M. S. Taqqu, “Properties and numerical evaluation of the {Rosenblatt} distribution”, Bernoulli, 19:3 (2013), 982–1005 | DOI | MR | Zbl
[30] C. A. Tudor, Analysis of variations for self-similar processes. A stochastic calculus approach, Probab. Appl. (N. Y.), Springer, Cham, 2013, xii+268 pp. | DOI | MR | Zbl