Persistence probabilities and a decorrelation inequality for the Rosenblatt process and Hermite processes
Teoriâ veroâtnostej i ee primeneniâ, Tome 63 (2018) no. 4, pp. 817-826 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study persistence probabilities of Hermite processes. As a tool, we derive a general decorrelation inequality for the Rosenblatt process, which is reminiscent of Slepian's lemma for Gaussian processes or the FKG inequality and which may be of independent interest. This allows us to compute the persistence exponent for the Rosenblatt process. For general Hermite processes, we derive upper and lower bounds for the persistence probabilities with the conjectured persistence exponent, but with nonmatching boundaries.
Keywords: long-range dependence, random walk, Hermite process, Rosenblatt process, correlation inequality, first passage times.
Mots-clés : persistence
@article{TVP_2018_63_4_a10,
     author = {F. Aurzada and C. M\"onch},
     title = {Persistence probabilities and a decorrelation inequality for the {Rosenblatt} process and {Hermite} processes},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {817--826},
     year = {2018},
     volume = {63},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2018_63_4_a10/}
}
TY  - JOUR
AU  - F. Aurzada
AU  - C. Mönch
TI  - Persistence probabilities and a decorrelation inequality for the Rosenblatt process and Hermite processes
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2018
SP  - 817
EP  - 826
VL  - 63
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_2018_63_4_a10/
LA  - en
ID  - TVP_2018_63_4_a10
ER  - 
%0 Journal Article
%A F. Aurzada
%A C. Mönch
%T Persistence probabilities and a decorrelation inequality for the Rosenblatt process and Hermite processes
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2018
%P 817-826
%V 63
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_2018_63_4_a10/
%G en
%F TVP_2018_63_4_a10
F. Aurzada; C. Mönch. Persistence probabilities and a decorrelation inequality for the Rosenblatt process and Hermite processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 63 (2018) no. 4, pp. 817-826. http://geodesic.mathdoc.fr/item/TVP_2018_63_4_a10/

[1] F. Aurzada, “On the one-sided exit problem for fractional Brownian motion”, Electron. Commun. Probab., 16 (2011), 392–404 | DOI | MR | Zbl

[2] F. Aurzada, C. Baumgarten, “Persistence of fractional Brownian motion with moving boundaries and applications”, J. Phys. A, 46:12 (2013), 125007, 12 pp. | DOI | MR | Zbl

[3] F. Aurzada, S. Dereich, “Universality of the asymptotics of the one-sided exit problem for integrated processes”, Ann. Inst. Henri Poincaré Probab. Stat., 49:1 (2013), 236–251 | DOI | MR | Zbl

[4] F. Aurzada, N. Guillotin-Plantard, F. Pène, “Persistence probabilities for stationary increment processes”, Stochastic Process. Appl., 128:5 (2018), 1750–1771 | DOI | MR | Zbl

[5] F. Aurzada, T. Simon, “Persistence probabilities and exponents”, Lévy matters V, Lecture Notes in Math., 2149, Springer, Cham, 2015, 183–221 | DOI | MR | Zbl

[6] A. J. Bray, S. N. Majumdar, G. Schehr, “Persistence and first-passage properties in nonequilibrium systems”, Adv. Phys., 62:3 (2013), 225–361 | DOI

[7] F. Castell, N. Guillotin-Plantard, F. Pène, B. Schapira, “On the one-sided exit problem for stable processes in random scenery”, Electron. Commun. Probab., 18 (2013), 33, 7 pp. | DOI | MR | Zbl

[8] F. Castell, N. Guillotin-Plantard, F. Watbled, “Persistence exponent for random processes in Brownian scenery”, ALEA Lat. Am. J. Probab. Math. Stat., 13 (2016), 79–94 | MR | Zbl

[9] Mingzhou Ding, Weiming Yang, “Distribution of the first return time in fractional Brownian motion and its application to the study of on-off intermittency”, Phys. Rev. E, 52:1 (1995), 207–213 | DOI

[10] R. L. Dobrushin, P. Major, “Non-central limit theorems for non-linear functionals of Gaussian fields”, Z. Wahrscheinlichkeitstheor. verw. Geb., 50:1 (1979), 27–52 | DOI | MR | Zbl

[11] R. Latała, D. Matlak, “Royen's proof of the Gaussian correlation inequality”, Geometric aspects of functional analysis, Lecture Notes in Math., 2169, Springer, Cham, 2017, 265–275 | DOI | MR | Zbl

[12] Zhengyan Lin, Zhidong Bai, Probability inequalities, Springer, Berlin; Beijing, Science Press, 2011, vii+181 pp. | DOI | Zbl

[13] S. N. Majumdar, “Persistence in nonequilibrium systems”, Current Science, 77:3 (1999), 370–375

[14] S. N. Majumdar, “Persistence of a particle in the Matheron–de Marsily velocity field”, Phys. Rev. E, 68:5 (2003), 050101(R) | DOI

[15] S. N. Majumdar, D. Dhar, “Persistence in a stationary time series”, Phys. Rev. E, 64:4 (2001), 046123 | DOI

[16] G. M. Molchan, “Maximum of a fractional Brownian motion: probabilities of small values”, Comm. Math. Phys., 205:1 (1999), 97–111 | DOI | MR | Zbl

[17] G. Molchan, “Unilateral small deviations of processes related to the fractional Brownian motion”, Stochastic Process. Appl., 118:11 (2008), 2085–2097 | DOI | MR | Zbl

[18] G. Molchan, “Survival exponents for some Gaussian processes”, Int. J. Stoch. Anal., 2012 (2012), 137271, 20 pp. | MR | Zbl

[19] G. Molchan, “The inviscid Burgers equation with fractional Brownian initial data: the dimension of regular Lagrangian points”, J. Stat. Phys., 167:6 (2017), 1546–1554 | DOI | MR | Zbl

[20] G. Molchan, “Survival exponents for fractional Brownian motion with multivariate time”, ALEA Lat. Am. J. Probab. Math. Stat., 14:1 (2017), 1–7 | MR | Zbl

[21] T. Mori, H. Oodaira, “The law of the iterated logarithm for self-similar processes represented by multiple Wiener integrals”, Probab. Theory Relat. Fields, 71:3 (1986), 367–391 | DOI | MR | Zbl

[22] P. E. Oliveira, Asymptotics for associated random variables, Springer, Heidelberg, 2012, x+194 pp. | DOI | MR | Zbl

[23] G. Oshanin, A. Rosso, G. Schehr, “Anomalous fluctuations of currents in Sinai-type random chains with strongly correlated disorder”, Phys. Rev. Lett., 110:10 (2013), 100602 | DOI

[24] S. Redner, “Survival probability in a random velocity field”, Phys. Rev. E, 56:5 (1997), 4967–4972 | DOI

[25] T. Royen, “A simple proof of the Gaussian correlation conjecture extended to some multivariate gamma distributions”, Far East J. Theor. Stat., 48:2 (2014), 139–145 | MR | Zbl

[26] D. Slepian, “The one-sided barrier problem for Gaussian noise”, Bell System Tech. J., 41:2 (1962), 463–501 | DOI | MR

[27] M. S. Taqqu, “Weak convergence to fractional Brownian motion and to the Rosenblatt process”, Z. Wahrscheinlichkeitstheor. verw. Geb., 31:4 (1975), 287–302 | DOI | MR | Zbl

[28] M. S. Taqqu, “Convergence of integrated processes of arbitrary Hermite rank”, Z. Wahrscheinlichkeitstheor. verw. Geb., 50:1 (1979), 53–83 | DOI | MR | Zbl

[29] M. S. Veillette, M. S. Taqqu, “Properties and numerical evaluation of the {Rosenblatt} distribution”, Bernoulli, 19:3 (2013), 982–1005 | DOI | MR | Zbl

[30] C. A. Tudor, Analysis of variations for self-similar processes. A stochastic calculus approach, Probab. Appl. (N. Y.), Springer, Cham, 2013, xii+268 pp. | DOI | MR | Zbl