@article{TVP_2018_63_4_a1,
author = {P. Babilua and E. A. Nadaraya},
title = {On one homogeneity test based on quadratic deviations between kernel estimators of a distribution density in $p\geq 2$ independent samples},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {654--668},
year = {2018},
volume = {63},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2018_63_4_a1/}
}
TY - JOUR AU - P. Babilua AU - E. A. Nadaraya TI - On one homogeneity test based on quadratic deviations between kernel estimators of a distribution density in $p\geq 2$ independent samples JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2018 SP - 654 EP - 668 VL - 63 IS - 4 UR - http://geodesic.mathdoc.fr/item/TVP_2018_63_4_a1/ LA - ru ID - TVP_2018_63_4_a1 ER -
%0 Journal Article %A P. Babilua %A E. A. Nadaraya %T On one homogeneity test based on quadratic deviations between kernel estimators of a distribution density in $p\geq 2$ independent samples %J Teoriâ veroâtnostej i ee primeneniâ %D 2018 %P 654-668 %V 63 %N 4 %U http://geodesic.mathdoc.fr/item/TVP_2018_63_4_a1/ %G ru %F TVP_2018_63_4_a1
P. Babilua; E. A. Nadaraya. On one homogeneity test based on quadratic deviations between kernel estimators of a distribution density in $p\geq 2$ independent samples. Teoriâ veroâtnostej i ee primeneniâ, Tome 63 (2018) no. 4, pp. 654-668. http://geodesic.mathdoc.fr/item/TVP_2018_63_4_a1/
[1] N. H. Anderson, P. Hall, D. M. Titterington, “Two-sample test statistics for measuring discrepancies between two multivariate probability density functions using kernel-based density estimates”, J. Multivariate Anal., 50:1 (1994), 41–54 | DOI | MR | Zbl
[2] E. A. Nadaraya, “Predelnoe raspredelenie kvadraticheskogo raskhozhdeniya dvukh neparametricheskikh otsenok plotnosti raspredeleniya”, Soobsch. AN GSSR, 78:1 (1975), 25–28 | MR | Zbl
[3] J. Komlós, P. Major, G. Tusnády, “An approximation of partial sums of independent $\mathrm{RV}$'s and the sample $\mathrm{DF}$. I”, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 32:1-2 (1975), 111–131 | DOI | MR | Zbl
[4] P. Hall, “Limit theorems for stochastic measures of the accuracy of density estimators”, Stochastic Process. Appl., 13:1 (1982), 11–25 | DOI | MR | Zbl
[5] E. A. Nadaraya, Nonparametric estimation of probability densities and regression curves, Math. Appl. (Soviet Ser.), 20, Kluwer Acad. Publ., Dordrecht, 1989, x+213 pp. | DOI | MR | MR | Zbl | Zbl
[6] P. J. Bickel, M. Rosenblatt, “On some global measures of the deviations of density function estimates”, Ann. Statist., 1:6 (1973), 1071–1095 | DOI | MR | Zbl
[7] G. K. Bhattacharyya, G. G. Roussas, “Estimation of a certain functional of a probability density function”, Skand. Aktuarietidskr., 1969 (1969), 201–206 | MR | Zbl
[8] D. M. Mason, E. Nadaraya, G. Sokhadze, “Integral functionals of the density”, Nonparametrics and robustness in modern statistical inference and time series analysis: a Festschrift in honor of Professor Jana Jurečková, Inst. Math. Stat. (IMS) Collect., 7, Inst. Math. Statist., Beachwood, OH, 2010, 153–168 | DOI | MR
[9] E. A. Nadaraya, “On non-parametric estimates of density functions and regression curves”, Theory Probab. Appl., 10:1 (1965), 186–190 | DOI | MR | Zbl