On one homogeneity test based on quadratic deviations between kernel estimators of a distribution density in $p\geq 2$ independent samples
Teoriâ veroâtnostej i ee primeneniâ, Tome 63 (2018) no. 4, pp. 654-668

Voir la notice de l'article provenant de la source Math-Net.Ru

A homogeneity test is constructed based on kernel-type estimators of a distribution density. The limit power of the test thus constructed is found for Pitman-type close alternatives.
Keywords: homogeneity hypothesis, test power, kernel estimator of density, limit theorem, Brownian bridges.
@article{TVP_2018_63_4_a1,
     author = {P. Babilua and E. A. Nadaraya},
     title = {On one homogeneity test based on quadratic deviations between kernel estimators of a distribution density in $p\geq 2$ independent samples},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {654--668},
     publisher = {mathdoc},
     volume = {63},
     number = {4},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2018_63_4_a1/}
}
TY  - JOUR
AU  - P. Babilua
AU  - E. A. Nadaraya
TI  - On one homogeneity test based on quadratic deviations between kernel estimators of a distribution density in $p\geq 2$ independent samples
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2018
SP  - 654
EP  - 668
VL  - 63
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2018_63_4_a1/
LA  - ru
ID  - TVP_2018_63_4_a1
ER  - 
%0 Journal Article
%A P. Babilua
%A E. A. Nadaraya
%T On one homogeneity test based on quadratic deviations between kernel estimators of a distribution density in $p\geq 2$ independent samples
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2018
%P 654-668
%V 63
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2018_63_4_a1/
%G ru
%F TVP_2018_63_4_a1
P. Babilua; E. A. Nadaraya. On one homogeneity test based on quadratic deviations between kernel estimators of a distribution density in $p\geq 2$ independent samples. Teoriâ veroâtnostej i ee primeneniâ, Tome 63 (2018) no. 4, pp. 654-668. http://geodesic.mathdoc.fr/item/TVP_2018_63_4_a1/