Mots-clés : interruption
@article{TVP_2018_63_4_a0,
author = {L. G. Afanas'eva and A. W. Tkachenko},
title = {Stability conditions for queueing systems with regenerative flow of interruptions},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {623--653},
year = {2018},
volume = {63},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2018_63_4_a0/}
}
TY - JOUR AU - L. G. Afanas'eva AU - A. W. Tkachenko TI - Stability conditions for queueing systems with regenerative flow of interruptions JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2018 SP - 623 EP - 653 VL - 63 IS - 4 UR - http://geodesic.mathdoc.fr/item/TVP_2018_63_4_a0/ LA - ru ID - TVP_2018_63_4_a0 ER -
L. G. Afanas'eva; A. W. Tkachenko. Stability conditions for queueing systems with regenerative flow of interruptions. Teoriâ veroâtnostej i ee primeneniâ, Tome 63 (2018) no. 4, pp. 623-653. http://geodesic.mathdoc.fr/item/TVP_2018_63_4_a0/
[1] H. White, L. S. Christie, “Queuing with preemptive priorities or with breakdown”, Operations Res., 6:1 (1958), 79–95 | DOI | MR
[2] B. Avi-Itzhak, P. Naor, “Some queuing problems with the service station subject to breakdown”, Operations Res., 11:3 (1963), 303–320 | DOI | MR | Zbl
[3] K. Thiruvengadam, “Queuing with breakdowns”, Operations Res., 11:1 (1963), 62–71 | DOI | MR | Zbl
[4] D. P. Gaver Jr., “A waiting line with interrupted service, including priorities”, J. Roy. Statist. Soc. Ser. B, 24 (1962), 73–90 | MR | Zbl
[5] D. Fiems, H. Bruneel, “Discrete-time queueing systems with {Markovian} preemptive vacations”, Math. Comput. Modelling, 57:3-4 (2013), 782–792 | DOI | MR | Zbl
[6] A. Krishnamoorthy, P. K. Pramod, S. R. Chakravarthy, “Queues with interruptions: a survey”, TOP, 22:1 (2014), 290–320 | DOI | MR | Zbl
[7] A. V. Pechinkin, I. A. Sokolov, V. V. Chaplygin, “Mnogolineinaya sistema massovogo obsluzhivaniya s gruppovym otkazom priborov”, Inform. i ee primen., 3:3 (2009), 4–15
[8] L. G. Afanasyeva, E. E. Bashtova, “Coupling method for asymptotic analysis of queues with regenerative input and unreliable server”, Queueing Syst., 76:2 (2014), 125–147 | DOI | MR | Zbl
[9] A. V. Tkachenko, “Multichannel queueing system in a random environment”, Moscow Univ. Math. Bull., 69:1 (2014), 37–40 | DOI | MR | Zbl
[10] E. Morozov, D. Fiems, H. Bruneel, “Stability analysis of multiserver discrete-time queueing systems with renewal-type server interruptions”, Performance Evaluation, 68:12 (2011), 1261–1275 | DOI
[11] J. G. Dai, “On positive Harris recurrence of multiclass queueing networks: a unified approach via fluid limit models”, Ann. Appl. Probab., 5:1 (1995), 49–77 | DOI | MR | Zbl
[12] Hong Chen, “Fluid approximations and stability of multiclass queueing networks: work-conserving disciplines”, Ann. Appl. Probab., 5:3 (1995), 637–665 | DOI | MR | Zbl
[13] Hong Chen, D. D. Yao, Fundamentals of queueing networks. Performance, asymptotics, and optimization, Appl. Math. (N. Y.), Springer-Verlag, New York, 2001, xviii+405 pp. | DOI | MR | Zbl
[14] S. Foss, N. Konstantopoulos, “An overview of some stochastic stability methods”, J. Oper. Res. Soc. Japan, 47:4 (2004), 275–303 | DOI | MR | Zbl
[15] H. Thorisson, “A complete coupling proof of Blackwell's renewal theorem”, Stochastic Process. Appl., 26:1 (1987), 87–97 | DOI | MR | Zbl
[16] A. A. Borovkov, Stochastic processes in queueing theory, Appl. Math., 4, Springer-Verlag, New York–Berlin, 1976, xi+280 pp. | MR | MR | Zbl | Zbl
[17] S. Asmussen, Applied probability and queues, Appl. Math. (N. Y.), 51, 2nd ed., Springer-Verlag, New York, 2003, xii+438 pp. | MR | Zbl
[18] R. M. Loynes, “The stability of a queue with non-independent inter-arrival and service times”, Proc. Cambridge Philos. Soc., 58:3 (1962), 497–520 | DOI | MR | Zbl
[19] W. Feller, An introduction to probability theory and its applications, v. 1, 2, John Wiley Sons, Inc., New York–London–Sydney, 1968, 1971, xviii+509 pp., xxiv+669 pp. | MR | MR | Zbl
[20] T. N. Belorusov, “Ergodicity of a multichannel queueing system with balking”, Theory Probab. Appl., 56:1 (2012), 120–126 | DOI | DOI | MR | Zbl
[21] L. G. Afanasyeva, A. V. Tkachenko, “Multichannel queueing systems with regenerative input flow”, Theory Probab. Appl., 58:2 (2014), 174–192 | DOI | DOI | MR | Zbl
[22] W. L. Smith, “Regenerative stochastic processes”, Proc. Roy. Soc. London. Ser. A, 232:1188 (1955), 6–31 | DOI | MR | Zbl
[23] S. Meyn, R. L. Tweedie, Markov chains and stochastic stability, 2nd ed., Cambridge Univ. Press, Cambridge, 2009, xxviii+594 pp. | DOI | MR | Zbl