The Berry--Esseen bound for $\rho$-mixing random variables and its applications in nonparametric regression model
Teoriâ veroâtnostej i ee primeneniâ, Tome 63 (2018) no. 3, pp. 584-608
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, the Berry–Esseen bound for $\rho$-mixing random variables with the rate of normal approximation
$O(n^{-1/6}\log n)$ is established under some suitable conditions. By using the Berry–Esseen bound, we further investigate the
Berry–Esseen bound of sample quantiles for $\rho$-mixing random
variables. The rate of normal approximation is shown to be $O(n^{-1/6}\log n)$ under some suitable conditions. In addition,
the asymptotic normality of the linear weighted estimator for the nonparametric regression model based on $\rho$-mixing errors is
studied by using the Berry–Esseen bound that we established. Some new results are obtained in the paper under much weaker dependent structures.
Keywords:
Berry–Esseen bound, normal approximation, nonparametric regression model, $\rho$-mixing sequence.
Mots-clés : sample quantiles
Mots-clés : sample quantiles
@article{TVP_2018_63_3_a9,
author = {X. J. Wang and S. H. Hu},
title = {The {Berry--Esseen} bound for $\rho$-mixing random variables and its applications in nonparametric regression model},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {584--608},
publisher = {mathdoc},
volume = {63},
number = {3},
year = {2018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TVP_2018_63_3_a9/}
}
TY - JOUR AU - X. J. Wang AU - S. H. Hu TI - The Berry--Esseen bound for $\rho$-mixing random variables and its applications in nonparametric regression model JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2018 SP - 584 EP - 608 VL - 63 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_2018_63_3_a9/ LA - en ID - TVP_2018_63_3_a9 ER -
%0 Journal Article %A X. J. Wang %A S. H. Hu %T The Berry--Esseen bound for $\rho$-mixing random variables and its applications in nonparametric regression model %J Teoriâ veroâtnostej i ee primeneniâ %D 2018 %P 584-608 %V 63 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/TVP_2018_63_3_a9/ %G en %F TVP_2018_63_3_a9
X. J. Wang; S. H. Hu. The Berry--Esseen bound for $\rho$-mixing random variables and its applications in nonparametric regression model. Teoriâ veroâtnostej i ee primeneniâ, Tome 63 (2018) no. 3, pp. 584-608. http://geodesic.mathdoc.fr/item/TVP_2018_63_3_a9/