The Berry–Esseen bound for $\rho$-mixing random variables and its applications in nonparametric regression model
Teoriâ veroâtnostej i ee primeneniâ, Tome 63 (2018) no. 3, pp. 584-608 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, the Berry–Esseen bound for $\rho$-mixing random variables with the rate of normal approximation $O(n^{-1/6}\log n)$ is established under some suitable conditions. By using the Berry–Esseen bound, we further investigate the Berry–Esseen bound of sample quantiles for $\rho$-mixing random variables. The rate of normal approximation is shown to be $O(n^{-1/6}\log n)$ under some suitable conditions. In addition, the asymptotic normality of the linear weighted estimator for the nonparametric regression model based on $\rho$-mixing errors is studied by using the Berry–Esseen bound that we established. Some new results are obtained in the paper under much weaker dependent structures.
Keywords: Berry–Esseen bound, normal approximation, nonparametric regression model, $\rho$-mixing sequence.
Mots-clés : sample quantiles
@article{TVP_2018_63_3_a9,
     author = {X. J. Wang and S. H. Hu},
     title = {The {Berry{\textendash}Esseen} bound for $\rho$-mixing random variables and its applications in nonparametric regression model},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {584--608},
     year = {2018},
     volume = {63},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2018_63_3_a9/}
}
TY  - JOUR
AU  - X. J. Wang
AU  - S. H. Hu
TI  - The Berry–Esseen bound for $\rho$-mixing random variables and its applications in nonparametric regression model
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2018
SP  - 584
EP  - 608
VL  - 63
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TVP_2018_63_3_a9/
LA  - en
ID  - TVP_2018_63_3_a9
ER  - 
%0 Journal Article
%A X. J. Wang
%A S. H. Hu
%T The Berry–Esseen bound for $\rho$-mixing random variables and its applications in nonparametric regression model
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2018
%P 584-608
%V 63
%N 3
%U http://geodesic.mathdoc.fr/item/TVP_2018_63_3_a9/
%G en
%F TVP_2018_63_3_a9
X. J. Wang; S. H. Hu. The Berry–Esseen bound for $\rho$-mixing random variables and its applications in nonparametric regression model. Teoriâ veroâtnostej i ee primeneniâ, Tome 63 (2018) no. 3, pp. 584-608. http://geodesic.mathdoc.fr/item/TVP_2018_63_3_a9/

[1] K. B. Athreya, S. N. Lahiri, Measure theory and probability theory, Springer Texts Statist., Springer, New York, 2006, xviii+618 pp. | DOI | MR | Zbl

[2] A. Bikyalis, “Otsenki ostatochnogo chlena v tsentralnoi predelnoi teoreme”, Litov. matem. sb., 6:3 (1966), 323–346 | MR | Zbl

[3] E. Bolthausen, “The Berry–Esseen theorem for strongly mixing Harris recurrent Markov chains”, Z. Wahrscheinlichkeitstheor. verw. Geb., 60:3 (1982), 283–289 | DOI | MR | Zbl

[4] R. C. Bradley, “A stationary rho-mixing Markov chain which is not “interlaced” rho-mixing”, J. Theoret. Probab., 14:3 (2001), 717–727 | DOI | MR | Zbl

[5] Zongwu Cai, G. G. Roussas, “Berry–Esseen bounds for smooth estimator of a distribution function under association”, J. Nonparametr. Statist., 11:1-3 (1999), 79–106 | DOI | MR | Zbl

[6] M. N. Chang, P. V. Rao, “Berry–Esseen bound for the Kaplan–Meier estimator”, Comm. Statist. Theory Methods, 18:12 (1989), 4647–4664 | DOI | MR | Zbl

[7] L. H. Y. Chen, Qiman Shao, “A non-uniform Berry–Esseen bound via Stein's method”, Probab. Theory Related Fields, 120:2 (2001), 236–254 | DOI | MR | Zbl

[8] Pingyan Chen, Shixin Gan, “On moments of the maximum of normed partial sums of $\rho$-mixing random variables”, Statist. Probab. Lett., 78:10 (2008), 1215–1221 | DOI | MR | Zbl

[9] Y. Fan, “Consistent nonparametric multiple regression for dependent heterogeneous processes: the fixed design case”, J. Multivariate Anal., 33:1 (1990), 72–88 | DOI | MR | Zbl

[10] P. Hall, C. C. Heyde, Martingale limit theory and its application, Probab. Math. Statist., Academic Press, Inc., New York–London, 1980, xii+308 pp. | MR | Zbl

[11] Shuhe Hu, Ming Hu, “A general approach rate to the strong law of large numbers”, Statist. Probab. Lett., 76:8 (2006), 843–851 | DOI | MR | Zbl

[12] Shuhe Hu, Chunhua Zhu, Yebin Chen, Lichun Wang, “Fixed-design regression for linear time series”, Acta Math. Sci. Ser. B (Engl. Ed.), 22:1 (2002), 9–18 | DOI | MR | Zbl

[13] I. A. Ibragimov, “Some limit theorems for stationary processes”, Theory Probab. Appl., 7:4 (1962), 349–382 | DOI | MR | Zbl

[14] A. N. Kolmogorov, Y. A. Rozanov, “On strong mixing conditions for stationary Gaussian processes”, Theory Probab. Appl., 5:2 (1960), 204–208 | DOI | MR | Zbl

[15] S. N. Lahiri, S. Sun, “A Berry–Esseen theorem for sample quantiles under weak dependence”, Ann. Appl. Probab., 19:1 (2009), 108–126 | DOI | MR | Zbl

[16] Guoliang Li, Luqin Liu, “Strong consistency of a class of estimators in partial linear models under martingale difference sequences”, in Chinese, Acta Math. Sci. Ser. A (Chin. Ed.), 27:5 (2007), 788–801 | MR | Zbl

[17] Yongming Li, Jianhua Guo, Naiyi Li, “Some inequalities for a LNQD sequence with applications”, J. Inequal. Appl., 2012 (2012), 216, 9 pp. | DOI | MR | Zbl

[18] Hanying Liang, Bingyi Jing, “Asymptotic properties for estimates of nonparametric regression models based on negatively associated sequences”, J. Multivariate Anal., 95:2 (2005), 227–245 | DOI | MR | Zbl

[19] Hanying Liang, J. Uña-Álvarez, “A Berry–Esseen type bound in kernel density estimation for strong mixing censored samples”, J. Multivariate Anal., 100:6 (2009), 1219–1231 | DOI | MR | Zbl

[20] Zhengyan Lin, Zhidong Bai, Probability inequalities, Science Press Beijing, Beijing; Springer, Heidelberg, 2010, xii+181 pp. | DOI | MR | Zbl

[21] Weidong Liu, Zhengyan Lin, Qiman Shao, “The asymptotic distribution and Berry–Esseen bound of a new test for independence in high dimension with an application to stochastic optimization”, Ann. Appl. Probab., 18:6 (2008), 2337–2366 | DOI | MR | Zbl

[22] M. Peligrad, “Invariance principles for mixing sequences of random variables”, Ann. Probab., 10:4 (1982), 968–981 | DOI | MR | Zbl

[23] M. Peligrad, Qiman Shao, “Estimation of the variance of partial sums for $\rho$-mixing random variables”, J. Multivariate Anal., 52:1 (1995), 140–157 | DOI | MR | Zbl

[24] V. V. Petrov, “A limit theorem for sums of independent, nonidentically distributed random variables”, J. Soviet Math., 20:3 (1982), 2232–2235 | DOI | MR | Zbl

[25] V. V. Petrov, Limit theorems of probability theory. Sequences of independent random variables, Oxford Stud. Probab., 4, The Clarendon Press, Oxford Univ. Press, New York, 1995, xii+292 pp. | MR | Zbl

[26] R. D. Reiss, “On the accuracy of the normal approximation for quantiles”, Ann. Probab., 2:4 (1974), 741–744 | DOI | MR | Zbl

[27] E. Rio, “Sur le théorème de Berry–Esseen pour les suites faiblement dépendantes”, Probab. Theory Related Fields, 104:2 (1996), 255–282 | DOI | MR | Zbl

[28] G. G. Roussas, “Consistent regression estimation with fixed design points under dependence conditions”, Statist. Probab. Lett., 8:1 (1989), 41–50 | DOI | MR | Zbl

[29] G. G. Roussas, L. T. Tran, D. A. Ioannides, “Fixed design regression for time series: asymptotic normality”, J. Multivariate Anal., 40:2 (1992), 262–291 | DOI | MR | Zbl

[30] R. J. Serfling, Approximation theorems of mathematical statistics, Wiley Ser. Probab. Math. Statist., John Wiley Sons, Inc., New York, 1980, xiv+371 pp. | MR | Zbl

[31] Qiman Shao, “Exponential inequalities for dependent random variables”, Acta Math. Appl. Sinica (English Ser.), 6:4 (1990), 338–350 | DOI | MR | Zbl

[32] Qiman Shao, “Maximal inequalities for partial sums of $\rho$-mixing sequences”, Ann. Probab., 23:2 (1995), 948–965 | DOI | MR | Zbl

[33] Aiting Shen, “Bernstein-type inequality for widely dependent sequence and its application to nonparametric regression models”, Abstr. Appl. Anal., 2013 (2013), 862602, 9 pp. | MR

[34] Aiting Shen, “On asymptotic approximation of inverse moments for a class of nonnegative random variables”, Statistics, 48:6 (2014), 1371–1379 | DOI | MR | Zbl

[35] Aiting Shen, “Complete convergence for weighted sums of END random variables and its application to nonparametric regression models”, J. Nonparametr. Stat., 28:4 (2016), 702–715 | DOI | MR | Zbl

[36] Aiting Shen, Yue Shi, Wenjuan Wang, Bing Han, “Bernstein-type inequality for weakly dependent sequence and its applications”, Rev. Mat. Complut., 25:1 (2012), 97–108 | DOI | MR | Zbl

[37] A. N. Shiryaev, “Probability”, Grad. Texts in Math., 95, 2nd ed., Springer-Verlag, New York, 1995, xvi+623 pp. | DOI | MR | MR | Zbl | Zbl

[38] A. N. Tikhomirov, “On the convergence rate in the central limit theorem for weakly dependent random variables”, Theory Probab. Appl., 25:4 (1981), 790–809 | DOI | MR | Zbl

[39] L. Tran, G. Roussas, S. Yakowitz, B. Truong Van, “Fixed-design regression for linear time series”, Ann. Statist., 24:3 (1996), 975–991 | DOI | MR | Zbl

[40] C. Tudor, “Berry–Esséen bounds and almost sure CLT for the quadratic variation of the sub-fractional Brownian motion”, J. Math. Anal. Appl., 375:2 (2011), 667–676 | DOI | MR | Zbl

[41] Xuejun Wang, Xin Deng, Lulu Zheng, Shuhe Hu, “Complete convergence for arrays of rowwise negatively superadditive-dependent random variables and its applications”, Statistics, 48:4 (2014), 834–850 | DOI | MR | Zbl

[42] Xuejun Wang, Chen Xu, Tien-Chung Hu, A. Volodin, Shuhe Hu, “On complete convergence for widely orthant-dependent random variables and its applications in nonparametric regression models”, Test, 23:3 (2014), 607–629 | DOI | MR | Zbl

[43] Shanchao Yang, “Uniformly asymptotic normality of the regression weighted estimator for negatively associated samples”, Statist. Probab. Lett., 62:2 (2003), 101–110 | DOI | MR | Zbl

[44] Shanchao Yang, “Maximal moment inequality for partial sums of strong mixing sequences and application”, Acta Math. Sin. (Engl. Ser.), 23:6 (2007), 1013–1024 | DOI | MR | Zbl

[45] Wenzhi Yang, Xuejun Wang, Shuhe Hu, “A note on the Berry–Esséen bound of sample quantiles for $\varphi$-mixing sequence”, Comm. Statist. Theory Methods, 43:19 (2014), 4187–4194 | DOI | MR | Zbl

[46] Wenzhi Yang, Xuejun Wang, Xiaoqin Li, Shuhe Hu, “Berry–Esséen bound of sample quantiles for $\varphi$-mixing random variables”, J. Math. Anal. Appl., 388:1 (2012), 451–462 | DOI | MR | Zbl

[47] Xingcai Zhou, Jinguan Lin, Changming Yin, “Asymptotic properties of wavelet-based estimator in nonparametric regression model with weakly dependent processes”, J. Inequal. Appl., 2013 (2013), 261, 18 pp. | DOI | MR | Zbl