The Berry--Esseen bound for $\rho$-mixing random variables and its applications in nonparametric regression model
Teoriâ veroâtnostej i ee primeneniâ, Tome 63 (2018) no. 3, pp. 584-608

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, the Berry–Esseen bound for $\rho$-mixing random variables with the rate of normal approximation $O(n^{-1/6}\log n)$ is established under some suitable conditions. By using the Berry–Esseen bound, we further investigate the Berry–Esseen bound of sample quantiles for $\rho$-mixing random variables. The rate of normal approximation is shown to be $O(n^{-1/6}\log n)$ under some suitable conditions. In addition, the asymptotic normality of the linear weighted estimator for the nonparametric regression model based on $\rho$-mixing errors is studied by using the Berry–Esseen bound that we established. Some new results are obtained in the paper under much weaker dependent structures.
Keywords: Berry–Esseen bound, normal approximation, nonparametric regression model, $\rho$-mixing sequence.
Mots-clés : sample quantiles
@article{TVP_2018_63_3_a9,
     author = {X. J. Wang and S. H. Hu},
     title = {The {Berry--Esseen} bound for $\rho$-mixing random variables and its applications in nonparametric regression model},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {584--608},
     publisher = {mathdoc},
     volume = {63},
     number = {3},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2018_63_3_a9/}
}
TY  - JOUR
AU  - X. J. Wang
AU  - S. H. Hu
TI  - The Berry--Esseen bound for $\rho$-mixing random variables and its applications in nonparametric regression model
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2018
SP  - 584
EP  - 608
VL  - 63
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2018_63_3_a9/
LA  - en
ID  - TVP_2018_63_3_a9
ER  - 
%0 Journal Article
%A X. J. Wang
%A S. H. Hu
%T The Berry--Esseen bound for $\rho$-mixing random variables and its applications in nonparametric regression model
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2018
%P 584-608
%V 63
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2018_63_3_a9/
%G en
%F TVP_2018_63_3_a9
X. J. Wang; S. H. Hu. The Berry--Esseen bound for $\rho$-mixing random variables and its applications in nonparametric regression model. Teoriâ veroâtnostej i ee primeneniâ, Tome 63 (2018) no. 3, pp. 584-608. http://geodesic.mathdoc.fr/item/TVP_2018_63_3_a9/