A note on the quasi-stationary distribution of the Shiryaev martingale on the positive half-line
Teoriâ veroâtnostej i ee primeneniâ, Tome 63 (2018) no. 3, pp. 565-583 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We obtain a closed-form formula for the quasi-stationary distribution of the classical Shiryaev martingale diffusion considered on the positive half-line $[A,+\infty)$ with $A>0$ fixed; the state space's left endpoint is assumed to be the killing boundary. The formula is obtained analytically as the solution of the appropriate singular Sturm–Liouville problem; the latter was first considered in section 7.8.2 of [P. Collet, S. Martínez, and J. San Martín, Quasi-Stationary Distributions. Markov Chains, Diffusions and Dynamical Systems, Springer, Heidelberg, 2013] but has heretofore remained unsolved.
Keywords: quasi-stationary distribution, Whittaker function.
Mots-clés : martingale Shiryaev diffusion process
@article{TVP_2018_63_3_a8,
     author = {A. S. Polunchenko and S. Mart{\'\i}nez and J. San Mart{\'\i}n},
     title = {A note on the quasi-stationary distribution of the {Shiryaev} martingale on the positive half-line},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {565--583},
     year = {2018},
     volume = {63},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2018_63_3_a8/}
}
TY  - JOUR
AU  - A. S. Polunchenko
AU  - S. Martínez
AU  - J. San Martín
TI  - A note on the quasi-stationary distribution of the Shiryaev martingale on the positive half-line
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2018
SP  - 565
EP  - 583
VL  - 63
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TVP_2018_63_3_a8/
LA  - en
ID  - TVP_2018_63_3_a8
ER  - 
%0 Journal Article
%A A. S. Polunchenko
%A S. Martínez
%A J. San Martín
%T A note on the quasi-stationary distribution of the Shiryaev martingale on the positive half-line
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2018
%P 565-583
%V 63
%N 3
%U http://geodesic.mathdoc.fr/item/TVP_2018_63_3_a8/
%G en
%F TVP_2018_63_3_a8
A. S. Polunchenko; S. Martínez; J. San Martín. A note on the quasi-stationary distribution of the Shiryaev martingale on the positive half-line. Teoriâ veroâtnostej i ee primeneniâ, Tome 63 (2018) no. 3, pp. 565-583. http://geodesic.mathdoc.fr/item/TVP_2018_63_3_a8/

[1] M. Abramowitz, I. A. Stegun (eds.), Handbook of mathematical functions with formulas, graphs, and mathematical tables, National Bureau of Standards Applied Mathematics Series, 55, 10th ed., Superintendent of Documents, U. S. Government Printing Office, Washington, DC, 1964, xiv+1046 pp. | MR | MR | Zbl | Zbl

[2] H. Buchholz, The confluent hypergeometric function with special emphasis on its applications, Transl. from the German, Springer Tracts in Natural Philosophy, 15, Springer-Verlag New York Inc., New York, 1969, xviii+238 pp. | DOI | MR | Zbl

[3] E. V. Burnaev, E. A. Feinberg, A. N. Shiryaev, “On asymptotic optimality of the second order in the minimax quickest detection problem of drift change for Brownian motion”, Theory Probab. Appl., 53:3 (2009), 519–536 | DOI | DOI | MR | Zbl

[4] P. Cattiaux, P. Collet, A. Lambert, S. Martínez, S. Méléard, J. San Martín, “Quasi-stationary distributions and diffusion models in population dynamics”, Ann. Probab., 37:5 (2009), 1926–1969 | DOI | MR | Zbl

[5] E. A. Coddington, N. Levinson, Theory of ordinary differential equations, McGraw-Hill Book Co., New York–Toronto–London, 1955, xii+429 pp. | MR | Zbl

[6] P. Collet, S. Martínez, J. San Martín, “Asymptotic laws for one-dimensional diffusions conditioned to nonabsorption”, Ann. Probab., 23:3 (1995), 1300–1314 | DOI | MR | Zbl

[7] P. Collet, S. Martínez, J. San Martín, Quasi-stationary distributions. Markov chains, diffusions and dynamical systems, Probab. Appl. (N. Y.), Springer, Heidelberg, 2013, xvi+280 pp. | DOI | MR | Zbl

[8] A. Comtet, C. Monthus, “Diffusion in a one-dimensional random medium and hyperbolic Brownian motion”, J. Phys. A, 29:7 (1996), 1331–1345 | DOI | MR | Zbl

[9] A. De Schepper, M. J. Goovaerts, “The $\mathrm{GARCH}(1,1)$-$M$ model: results for the densities of the variance and the mean”, Insurance Math. Econom., 24:1-2 (1999), 83–94 | DOI | MR | Zbl

[10] A. De Schepper, M. Teunen, M. Goovaerts, “An analytical inversion of a Laplace transform related to annuities certain”, Insurance Math. Econom., 14:1 (1994), 33–37 | DOI | MR | Zbl

[11] C. Donati-Martin, R. Ghomrasni, M. Yor, “On certain Markov processes attached to exponential functionals of Brownian motion; application to Asian options”, Rev. Mat. Iberoamericana, 17:1 (2001), 179–193 | DOI | MR | Zbl

[12] D. Dufresne, “The integral of geometric Brownian motion”, Adv. in Appl. Probab., 33:1 (2001), 223–241 | DOI | MR | Zbl

[13] N. Dunford, J. T. Schwartz, Linear operators, v. II, Spectral theory. Self adjoint operators in Hilbert space, Interscience Publishers John Wiley Sons, New York–London, 1963, ix+859–1923+7 pp. | MR | MR | Zbl | Zbl

[14] E. A. Feinberg, A. N. Shiryaev, “Quickest detection of drift change for Brownian motion in generalized Bayesian and minimax settings”, Statist. Decisions, 24:4 (2006), 445–470 | DOI | MR | Zbl

[15] H. Geman, M. Yor, “Bessel processes, Asian options, and perpetuities”, Math. Finance, 3:4 (1993), 349–375 | DOI | Zbl

[16] I. S. Gradshteyn, I. M. Ryzhik, Table of integrals, series, and products, 8th ed., Elsevier/Academic Press, Amsterdam, 2014, xlv+1133 pp. | MR | MR | Zbl | Zbl

[17] K. Itô, H. P. McKean, Jr., Diffusion processes and their sample paths, Grundlehren Math. Wiss., 125, 2nd corr. printing, Springer-Verlag, Berlin–New York, 1974, xv+321 pp. | MR | Zbl

[18] A. Kolmogoroff, “Über die analytischen Methoden in der Wahrscheinlichkeitsrechnung”, Math. Ann., 104:1 (1931), 415–458 | DOI | MR | Zbl

[19] B. M. Levitan, Razlozhenie po sobstvennym funktsiyam differentsialnykh uravnenii vtorogo poryadka, Gostekhizdat, M.–L., 1950, 159 pp.

[20] B. M. Levitan, I. S. Sargsjan, Introduction to spectral theory: selfadjoint ordinary differential operators, Transl. Math. Monogr., 39, Amer. Math. Soc., Providence, RI, 1975, xi+525 pp. | MR | MR | Zbl | Zbl

[21] V. Linetsky, “Spectral expansions for Asian (average price) options”, Oper. Res., 52:6 (2004), 856–867 | DOI | MR | Zbl

[22] V. Linetsky, “Spectral methods in derivative pricing”, Financial engineering, Handbooks Oper. Res. Management Sci., 15, Elsevier/North-Holland, Amsterdam, 2007, 223–299 | DOI | MR | Zbl

[23] P. Mandl, “Spectral theory of semi-groups connected with diffusion processes and its application”, Czechoslovak Math. J., 11:4 (1961), 558–569 | MR | Zbl

[24] S. Martínez, J. San Martín, “Rates of decay and $h$-processes for one dimensional diffusions conditioned on non-absorption”, J. Theoret. Probab., 14:1 (2001), 199–212 | DOI | MR | Zbl

[25] S. Martínez, J. San Martín, “Classiffication of killed one-dimensional diffusions”, Ann. Probab., 32:1A (2004), 530–552 | DOI | MR | Zbl

[26] M. A. Milevsky, “The present value of a stochasic perpetuity and the Gamma distribution”, Insurance Math. Econom., 20:3 (1997), 243–250 | DOI | MR | Zbl

[27] C. Monthus, A. Comtet, “On the flux distribution in a one dimensional disordered system”, J. Phys. I France, 4:5 (1994), 635–653 | DOI

[28] G. Peskir, “On the fundamental solution of the Kolmogorov–Shiryaev equation”, From stochastic calculus to mathematical finance, Springer, Berlin, 2006, 535–546 | DOI | MR | Zbl

[29] M. Pollak, D. Siegmund, “A diffusion process and its applications to detecting a change in the drift of Brownian motion”, Biometrika, 72:2 (1985), 267–280 | DOI | MR | Zbl

[30] A. S. Polunchenko, “Asymptotic near-minimaxity of the randomized Shiryaev–Roberts–Pollak change-point detection procedure in continuous time”, Teoriya veroyatn. i ee primen., 62:4 (2017), 769–786 ; Theory Probab. Appl., 62:4 (2018) (to appear) | DOI | MR

[31] A. S. Polunchenko, “On the quasi-stationary distribution of the Shiryaev–Roberts diffusion”, Sequential Anal., 36:1 (2017), 126–149 | DOI | MR | Zbl

[32] A. S. Polunchenko, G. Sokolov, “An analytic expression for the distribution of the generalized Shiryaev–Roberts diffusion. The {F}ourier spectral expansion approach”, Methodol. Comput. Appl. Probab., 18:4 (2016), 1153–1195 | DOI | MR | Zbl

[33] M. Schröder, “On the integral of geometric Brownian motion”, Adv. in Appl. Probab., 35:1 (2003), 159–183 | DOI | MR | Zbl

[34] A. N. Shiryaev, “The problem of the most rapid detection of a disturbance in a stationary process”, Soviet Math. Dokl., 2 (1961), 795–799 | MR | Zbl

[35] A. N. Shiryaev, “On optimum methods in quickest detection problems”, Theory Probab. Appl., 8:1 (1963), 22–46 | DOI | MR | Zbl

[36] A. N. Shiryaev, “Quickest detection problems in the technical analysis of the financial data”, Mathematical finance – Bachelier Congress 2000 (Paris), Springer Finance, Springer, Berlin, 2002, 487–521 | DOI | MR | Zbl

[37] L. J. Slater, Confluent hypergeometric functions, Cambridge Univ. Press, Cambirdge, UK, 1960, xi+247 pp. | MR | MR | Zbl | Zbl

[38] E. C. Titchmarsh, Eigenfunction expansions associated with second-order differential equations, Part 1, 2nd ed., Clarendon Press, Oxford, 1962, vi+203 pp. | MR | MR | Zbl | Zbl

[39] M. Vanneste, M. J. Goovaerts, E. Labie, “The distributions of annuities”, Insurance Math. Econom., 15:1 (1994), 37–48 | DOI | MR | Zbl

[40] E. T. Whittaker, “An expression of certain known functions as generalized hypergeometric functions”, Bull. Amer. Math. Soc., 10:3 (1903), 125–134 | DOI | MR | Zbl

[41] E. T. Whittaker, G. N. Watson, A course of modern analysis, 4th ed., Cambridge Univ. Press, Cambridge, UK, 1927, vii+608 pp. | DOI | MR | Zbl | Zbl

[42] E. Wong, “The construction of a class of stationary Markoff processes”, Stochastic processes in mathematical physics and engineering, Proc. Sympos. Appl. Math., 16, Amer. Math. Soc., Providence, RI, 1964, 264–276 | MR | Zbl

[43] M. Yor, “On some exponential functionals of Brownian motion”, Adv. in Appl. Probab., 24:3 (1992), 509–531 | DOI | MR | Zbl