Exact bounds on the truncated-tilted mean, with applications
Teoriâ veroâtnostej i ee primeneniâ, Tome 63 (2018) no. 3, pp. 545-564 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Exact upper bounds for ${\mathbf{E} Xe^{h(X\wedge w)}}/{\mathbf{E} e^{h(X\wedge w)}}$, which is the expectation of the Cramér transform of the so-called Winsorized-tilted mean of a random variable, are given in terms of its first two moments. Such results are needed in work with nonuniform Berry–Esseen-type bounds for general nonlinear statistics. As another application, optimal upper bounds on the Bayes posterior mean are provided. Certain monotonicity properties of the tilted mean are also presented.
Keywords: exact bound, Winsorization, truncation, large deviation, nonuniform Berry–Esseen-type bounds, monotonicity, Bayes posterior mean.
Mots-clés : Cramér transform
@article{TVP_2018_63_3_a7,
     author = {I. Pinelis},
     title = {Exact bounds on the truncated-tilted mean, with applications},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {545--564},
     year = {2018},
     volume = {63},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2018_63_3_a7/}
}
TY  - JOUR
AU  - I. Pinelis
TI  - Exact bounds on the truncated-tilted mean, with applications
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2018
SP  - 545
EP  - 564
VL  - 63
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TVP_2018_63_3_a7/
LA  - en
ID  - TVP_2018_63_3_a7
ER  - 
%0 Journal Article
%A I. Pinelis
%T Exact bounds on the truncated-tilted mean, with applications
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2018
%P 545-564
%V 63
%N 3
%U http://geodesic.mathdoc.fr/item/TVP_2018_63_3_a7/
%G en
%F TVP_2018_63_3_a7
I. Pinelis. Exact bounds on the truncated-tilted mean, with applications. Teoriâ veroâtnostej i ee primeneniâ, Tome 63 (2018) no. 3, pp. 545-564. http://geodesic.mathdoc.fr/item/TVP_2018_63_3_a7/

[1] A. Charnes, W. W. Cooper, “Programming with linear fractional functionals”, Naval Res. Logist. Quart., 9:3-4 (1962), 181–186 | DOI | MR | Zbl

[2] R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, D. E. Knuth, “On the Lambert $W$ function”, Adv. Comput. Math., 5:4 (1996), 329–359 | DOI | MR | Zbl

[3] J. D. Esary, F. Proschan, D. W. Walkup, “Association of random variables, with applications”, Ann. Math. Statist., 38:5 (1967), 1466–1474 | DOI | MR | Zbl

[4] Ky Fan, “Minimax theorems”, Proc. Nat. Acad. Sci. U.S.A., 39 (1953), 42–47 | DOI | MR | Zbl | Zbl

[5] W. Hoeffding, “The extrema of the expected value of a function of independent random variables”, Ann. Math. Statist., 26:2 (1955), 268–275 | DOI | MR | Zbl

[6] R. Jagannathan, “On some properties of programming problems in parametric form pertaining to fractional programming”, Management Sci., 12 (1966), 609–615 | DOI | MR | Zbl

[7] S. Karlin, W. J. Studden, Tchebycheff systems: With applications in analysis and statistics, Pure Appl. Math., 15, Interscience Publishers John Wiley Sons, New York–London–Sydney, 1966, xviii+586 pp. | MR | Zbl

[8] A. F. Karr, “Extreme points of certain sets of probability measures, with applications”, Math. Oper. Res., 8:1 (1983), 74–85 | DOI | MR | Zbl

[9] J. H. B. Kemperman, “On the role of duality in the theory of moments”, Semi-infinite programming and applications (Austin, TX, 1981), Lecture Notes in Econom. and Math. Systems, 215, Springer, Berlin–New York, 1983, 63–92 | DOI | MR | Zbl

[10] H. Kneser, “Sur un théorème fondamental de la théorie des jeux”, C. R. Acad. Sci. Paris, 234 (1952), 2418–2420 | MR | Zbl

[11] M. G. Kreĭn, “The ideas of P. L. Čebyšev and A. A. Markov in the theory of limiting values of integrals and their further development”, Amer. Math. Soc. Transl. (2), 12 (1959), 1–121, Amer. Math. Soc., Providence, R.I. | DOI | MR | Zbl

[12] M. G. Krein, A. A. Nudel'man, The Markov moment problem and extremal problems. Ideas and problems of P. L. Čebyšev and A. A. Markov and their further development, Transl. Math. Monogr., 50, Amer. Math. Soc., Providence, RI, 1977, v+417 pp. | MR | MR | Zbl | Zbl

[13] E. L. Lehmann, “Some concepts of dependence”, Ann. Math. Statist., 37:5 (1966), 1137–1153 | DOI | MR | Zbl

[14] I. Pinelis, “Optimal tail comparison based on comparison of moments”, High dimensional probability (Oberwolfach, 1996), Progr. Probab., 43, Birkhäuser, Basel, 1998, 297–314 | MR | Zbl

[15] I. Pinelis, “Exact lower bounds on the exponential moments of truncated random variables”, J. Appl. Probab., 48:2 (2011), 547–560 | DOI | MR | Zbl

[16] I. Pinelis, Tchebycheff systems and extremal problems for generalized moments: a brief survey, 2011, arXiv: 1107.3493

[17] I. Pinelis, “Convex cones of generalized multiply monotone functions and the dual cones”, Banach J. Math. Anal., 10:4 (2016), 864–897 ; (2015), arXiv: 1501.06599 | DOI | MR | Zbl

[18] I. Pinelis, “On the extreme points of moments sets”, Math. Methods Oper. Res., 83:3 (2016), 325–349 | DOI | MR | Zbl

[19] I. Pinelis, R. Molzon, “Optimal-order bounds on the rate of convergence to normality in the multivariate delta method”, Electron. J. Stat., 10:1 (2016), 1001–1063 | DOI | MR | Zbl

[20] I. F. Pinelis, “Criterion for complete determinacy for concave-convexlike games”, Math. Notes, 49:3 (1991), 277–279 | DOI | MR | Zbl

[21] M. Shaked, J. G. Shanthikumar, Stochastic orders, Springer Ser. Statist., Springer, New York, 2007, xvi+473 pp. | DOI | MR | Zbl

[22] M. Sion, “On general minimax theorems”, Pacific J. Math., 8 (1958), 171–176 | DOI | MR | Zbl

[23] J. von Neumann, O. Morgenstern, Theory of games and economic behavior, Princeton Univ. Press, Princeton, NJ, 1944, xviii+625 pp. | MR | MR | Zbl | Zbl

[24] G. Winkler, “Extreme points of moment sets”, Math. Oper. Res., 13:4 (1988), 581–587 | DOI | MR | Zbl