Mots-clés : Lamperti transformations.
@article{TVP_2018_63_3_a6,
author = {Y. Davydov and V. Paulauskas},
title = {Lamperti-type theorems for random fields},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {520--544},
year = {2018},
volume = {63},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TVP_2018_63_3_a6/}
}
Y. Davydov; V. Paulauskas. Lamperti-type theorems for random fields. Teoriâ veroâtnostej i ee primeneniâ, Tome 63 (2018) no. 3, pp. 520-544. http://geodesic.mathdoc.fr/item/TVP_2018_63_3_a6/
[1] B. Bajšanski, J. Karamata, “Regularly varying functions and the principle of equicontinuity”, Publ. Ramanujan Inst., 1 (1969), 235–246 | MR | Zbl
[2] H. Biermé, M. M. Meerschaert, H.-P. Scheffler, “Operator scaling stable random fields”, Stochastic Process. Appl., 117:3 (2007), 312–332 | DOI | MR | Zbl
[3] N. H. Bingham, C. M. Goldie, J. L. Teugels, Regular variation, Encyclopedia Math. Appl., 27, Cambridge Univ. Press, Cambridge, 1987, xx+491 pp. | DOI | MR | Zbl
[4] N. Burbaki, Obschaya topologiya. Osnovnye struktury, M., 1968, 272 pp. ; N. Bourbaki, Éléments de mathématique. Première partie. (Fasc. II.) Livre III: Topologie générale. Ch. 1: Structures topologiques. Ch. 2: Structures uniformes, Actualités Sci. Indust., 1142, 3-ème éd., Hermann, Paris, 1961, 263 pp. ; N. Bourbaki, General topology, Ch. 1–4, Elem. Math. (Berlin), 2nd printing, Springer-Verlag, Berlin, 1998, vii+437 с. | MR | Zbl | MR | Zbl | DOI | MR | Zbl
[5] Y. Davydov, V. Paulauskas, Lamperti type theorems for random fields, 2017, arXiv: 1705.00182
[6] G. Didier, M. M. Meerschaert, V. Pipiras, “Exponents of operator self-similar random fields”, J. Math. Anal. Appl., 448:2 (2017), 1450–1466 | DOI | MR | Zbl
[7] P. Embrechts, M. Maejima, Selfsimilar processes, Princeton Ser. Appl. Math., Princeton Univ. Press, Princeton, NJ, 2002, xii+111 pp. | MR | Zbl
[8] M. G. Genton, O. Perrin, M. S. Taqqu, “Self-similarity and Lamperti transformation for random fields”, Stoch. Models, 23:3 (2007), 397–411 | DOI | MR | Zbl
[9] L. Giraitis, H. L. Koul, D. Surgailis, Large sample inference for long memory processes, Imperial College Press, London, 2012, xvi+577 pp. | DOI | MR | Zbl
[10] B. V. Gnedenko, A. N. Kolmogorov, Limit distributions for sums of independent random variables, 2nd ed., Addison-Wesley Publishing Co., Reading, MA–London–Don Mills, ON, 1968, ix+293 pp. | MR | MR | Zbl
[11] W. N. Hudson, J. D. Mason, “Operator-self-similar processes in a finite-dimensional space”, Trans. Amer. Math. Soc., 273:1 (1982), 281–297 | DOI | MR | Zbl
[12] A. L. Yakimiv, Probabilistic applications of Tauberian theorems, Mod. Probab. Stat., VSP, Leiden, 2005, viii+225 pp. | DOI | MR | Zbl | Zbl
[13] Z. J. Jurek, J. D. Mason, Operator-limit distributions in probability theory, John Wiley Sons, Inc., New York, 1993, Wiley Ser. Probab. Math. Statist. Probab. Math. Statist. pp. | MR | Zbl
[14] J. Karamata, “Sur un mode de croissance régulière des fonctions”, Matematica (Cluj), 4 (1930), 38–53 | Zbl
[15] S. Kolodyński, J. Rosiński, “Group self-similar stable processes in $\mathbb{R}^d$”, J. Theoret. Probab., 16:4 (2003), 855–876 | DOI | MR | Zbl
[16] J. Lamperti, “Semi-stable stochastic processes”, Trans. Amer. Math. Soc., 104 (1962), 62–78 | DOI | MR | Zbl
[17] Yuqiang Li, Yimin Xiao, “Multivariate operator-self-similar random fields”, Stochastic Process. Appl., 121:6 (2011), 1178–1200 | DOI | MR | Zbl
[18] M. M. Meerschaert, “Regular variation in $\mathbf R^k$”, Proc. Amer. Math. Soc., 102:2 (1988), 341–348 | DOI | MR | Zbl
[19] M. M. Meerschaert, H.-P. Scheffler, “Multivariate regular variation of functions and measures”, J. Appl. Anal., 5:1 (1999), 125–146 | DOI | MR | Zbl
[20] M. M. Meerschaert, H.-P. Scheffler, Limit distributions for sums of random vectors. Heavy tails in theory and practice, Wiley Ser. Probab. Statist. Probab. Statist., John Wiley Sons, Inc., New York, 2001, xvi+484 pp. | MR | Zbl
[21] T. Ostrogorski, “Regular variation on homogeneous cones”, Publ. Inst. Math. (Beograd) (N. S.), 58(72) (1995), 51–70 | MR | Zbl
[22] G. Samorodnitsky, M. S. Taqqu, Stable non-Gaussian random processes. Stochastic models with infinite variance, Stochastic Model., Chapman Hall, New York, 1994, xxii+632 pp. | MR | Zbl
[23] E. B. Vinberg, “The theory of convex homogeneous cones”, Trans. Moscow Math. Soc., 12 (1963), 340–403 | MR | Zbl
[24] I. Weissman, “On convergence of types and processes in {Euclidean} spaces”, Z. Wahrscheinlichkeitstheor. verw. Geb., 37:1 (1976), 35–41 | DOI | MR | Zbl