Statistical analysis of the mixed fractional Ornstein–Uhlenbeck process
Teoriâ veroâtnostej i ee primeneniâ, Tome 63 (2018) no. 3, pp. 500-519 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper addresses the problem of estimating the drift parameter of the Ornstein–Uhlenbeck-type process driven by the sum of independent standard and fractional Brownian motions. With the help of some recent results on the canonical representation and spectral structure of mixed processes, the maximum likelihood estimator is shown to be consistent and asymptotically normal in the large-sample limit.
Keywords: maximum likelihood estimator, Ornstein–Uhlenbeck process, fractional Brownian motion, singularly perturbed integral equation, weakly singular integral operator.
@article{TVP_2018_63_3_a5,
     author = {P. Chigansky and M. Kleptsyna},
     title = {Statistical analysis of the mixed fractional {Ornstein{\textendash}Uhlenbeck} process},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {500--519},
     year = {2018},
     volume = {63},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2018_63_3_a5/}
}
TY  - JOUR
AU  - P. Chigansky
AU  - M. Kleptsyna
TI  - Statistical analysis of the mixed fractional Ornstein–Uhlenbeck process
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2018
SP  - 500
EP  - 519
VL  - 63
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TVP_2018_63_3_a5/
LA  - en
ID  - TVP_2018_63_3_a5
ER  - 
%0 Journal Article
%A P. Chigansky
%A M. Kleptsyna
%T Statistical analysis of the mixed fractional Ornstein–Uhlenbeck process
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2018
%P 500-519
%V 63
%N 3
%U http://geodesic.mathdoc.fr/item/TVP_2018_63_3_a5/
%G en
%F TVP_2018_63_3_a5
P. Chigansky; M. Kleptsyna. Statistical analysis of the mixed fractional Ornstein–Uhlenbeck process. Teoriâ veroâtnostej i ee primeneniâ, Tome 63 (2018) no. 3, pp. 500-519. http://geodesic.mathdoc.fr/item/TVP_2018_63_3_a5/

[1] A. V. Artemov, E. V. Burnaev, “Optimal estimation of a signal perturbed by a fractional Brownian noise”, Theory Probab. Appl., 60:1 (2016), 126–134 | DOI | DOI | MR | Zbl

[2] A. V. Balakrishnan, Stochastic differential systems. I. Filtering and control, a function space approach, Lecture Notes in Econom. and Math. Systems, 84, Springer-Verlag, Berlin–New York, 1973, v+252 pp. | DOI | MR | Zbl

[3] F. Baudoin, D. Nualart, “Equivalence of Volterra processes”, Stochastic Process. Appl., 107:2 (2003), 327–350 | DOI | MR

[4] C. Bender, T. Sottinen, E. Valkeila, “Fractional processes as models in stochastic finance”, Advanced mathematical methods for finance, Springer, Heidelberg, 2011, 75–103 | DOI | MR | Zbl

[5] F. Biagini, Yaozhong Hu, B. Øksendal, Tusheng Zhang, Stochastic calculus for fractional Brownian motion and applications, Probab. Appl. (N. Y.), Springer-Verlag, London, 2008, xii+329 pp. | DOI | MR | Zbl

[6] Chunhao Cai, P. Chigansky, M. Kleptsyna, “Mixed Gaussian processes: a filtering approach”, Ann. Probab., 44:4 (2016), 3032–3075 | DOI | MR | Zbl

[7] P. Cheridito, “Mixed fractional Brownian motion”, Bernoulli, 7:6 (2001), 913–934 | DOI | MR | Zbl

[8] P. Cheridito, “Arbitrage in fractional Brownian motion models”, Finance Stoch., 7:4 (2003), 533–553 | DOI | MR | Zbl

[9] P. Cheridito, “Representations of Gaussian measures that are equivalent to Wiener measure”, Séminaire de Probabilités XXXVII, Lecture Notes in Math., 1832, Springer, Berlin, 2003, 81–89 | DOI | MR | Zbl

[10] P. Chigansky, M. Kleptsyna, “Exact asymptotics in eigenproblems for fractional Brownian covariance operators”, Stochastic Process. Appl., 128:6 (2018), 2007–2059 | DOI | MR

[11] M. Dozzi, Y. Mishura, G. Shevchenko, “Asymptotic behavior of mixed power variations and statistical estimation in mixed models”, Stat. Inference Stoch. Process., 18:2 (2015), 151–175 | DOI | MR | Zbl

[12] P. Embrechts, M. Maejima, Selfsimilar processes, Princeton Ser. Appl. Math., Princeton Univ. Press, Princeton, NJ, 2002, xii+111 pp. | MR | Zbl

[13] I. C. Gohberg, M. G. Krein, Theory and applications of Volterra operators in Hilbert space, Transl. Math. Monogr., 24, Amer. Math. Soc., Providence, RI, 1970, x+430 pp. | MR | MR | Zbl | Zbl

[14] T. Hida, M. Hitsuda, Gaussian processes, Transl. from the Japan., Transl. Math. Monogr., 120, Amer. Math. Soc., Providence, RI, 1993, xvi+183 pp. | MR | Zbl

[15] Yaozhong Hu, D. Nualart, “Parameter estimation for fractional Ornstein–Uhlenbeck processes”, Statist. Probab. Lett., 80:11-12 (2010), 1030–1038 | DOI | MR | Zbl

[16] C. Jost, “Transformation formulas for fractional Brownian motion”, Stochastic Process. Appl., 116:10 (2006), 1341–1357 | DOI | MR | Zbl

[17] M. L. Kleptsyna, A. Le Breton, “Optimal linear filtering of general multidimensional Gaussian processes and its application to Laplace transforms of quadratic functionals”, J. Appl. Math. Stochastic Anal., 14:3 (2001), 215–226 | DOI | MR | Zbl

[18] M. L. Kleptsyna, A. Le Breton, “Statistical analysis of the fractional Ornstein–Uhlenbeck type process”, Stat. Inference Stoch. Process., 5:3 (2002), 229–248 | DOI | MR | Zbl

[19] Y. A. Kutoyants, Statistical inference for ergodic diffusion processes, Springer Ser. Statist., Springer-Verlag, London, 2004, xiv+481 pp. | DOI | MR | Zbl

[20] A. Le Breton, “Filtering and parameter estimation in a simple linear system driven by a fractional Brownian motion”, Statist. Probab. Lett., 38:3 (1998), 263–274 | DOI | MR | Zbl

[21] R. S. Liptser, A. N. Shiryaev, Statistics of random processes, v. I, Appl. Math. (N. Y.), 5, General theory, 2nd rev. and exp. ed., Springer-Verlag, Berlin, 2001, xvi+427 pp. | MR | MR | Zbl | Zbl

[22] Y. S. Mishura, Stochastic calculus for fractional Brownian motion and related processes, Lecture Notes in Math., 1929, Springer-Verlag, Berlin, 2008, xviii+393 pp. | DOI | MR | Zbl

[23] I. Norros, E. Valkeila, J. Virtamo, “An elementary approach to a Girsanov formula and other analytical results on fractional Brownian motions”, Bernoulli, 5:4 (1999), 571–587 | DOI | MR | Zbl

[24] V. Pipiras, M. S. Taqqu, Long-range dependence and self-similarity, Camb. Ser. Stat. Probab. Math., 45, Cambridge Univ. Press, Cambridge, 2017, xxiii+668 pp. | DOI | MR | Zbl

[25] T. Sottinen, L. Viitasaari, “Parameter estimation for the Langevin equation with stationary-increment Gaussian noise”, Stat. Inference Stoch. Process. (to appear) | DOI

[26] G. Vainikko, A. Pedas, “The properties of solutions of weakly singular integral equations”, J. Austral. Math. Soc. Ser. B, 22:4 (1980/81), 419–430 | DOI | MR | Zbl

[27] H. van Zanten, “When is a linear combination of independent fBm's equivalent to a single fBm?”, Stochastic Process. Appl., 117:1 (2007), 57–70 | DOI | MR | Zbl