@article{TVP_2018_63_3_a5,
author = {P. Chigansky and M. Kleptsyna},
title = {Statistical analysis of the mixed fractional {Ornstein{\textendash}Uhlenbeck} process},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {500--519},
year = {2018},
volume = {63},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TVP_2018_63_3_a5/}
}
P. Chigansky; M. Kleptsyna. Statistical analysis of the mixed fractional Ornstein–Uhlenbeck process. Teoriâ veroâtnostej i ee primeneniâ, Tome 63 (2018) no. 3, pp. 500-519. http://geodesic.mathdoc.fr/item/TVP_2018_63_3_a5/
[1] A. V. Artemov, E. V. Burnaev, “Optimal estimation of a signal perturbed by a fractional Brownian noise”, Theory Probab. Appl., 60:1 (2016), 126–134 | DOI | DOI | MR | Zbl
[2] A. V. Balakrishnan, Stochastic differential systems. I. Filtering and control, a function space approach, Lecture Notes in Econom. and Math. Systems, 84, Springer-Verlag, Berlin–New York, 1973, v+252 pp. | DOI | MR | Zbl
[3] F. Baudoin, D. Nualart, “Equivalence of Volterra processes”, Stochastic Process. Appl., 107:2 (2003), 327–350 | DOI | MR
[4] C. Bender, T. Sottinen, E. Valkeila, “Fractional processes as models in stochastic finance”, Advanced mathematical methods for finance, Springer, Heidelberg, 2011, 75–103 | DOI | MR | Zbl
[5] F. Biagini, Yaozhong Hu, B. Øksendal, Tusheng Zhang, Stochastic calculus for fractional Brownian motion and applications, Probab. Appl. (N. Y.), Springer-Verlag, London, 2008, xii+329 pp. | DOI | MR | Zbl
[6] Chunhao Cai, P. Chigansky, M. Kleptsyna, “Mixed Gaussian processes: a filtering approach”, Ann. Probab., 44:4 (2016), 3032–3075 | DOI | MR | Zbl
[7] P. Cheridito, “Mixed fractional Brownian motion”, Bernoulli, 7:6 (2001), 913–934 | DOI | MR | Zbl
[8] P. Cheridito, “Arbitrage in fractional Brownian motion models”, Finance Stoch., 7:4 (2003), 533–553 | DOI | MR | Zbl
[9] P. Cheridito, “Representations of Gaussian measures that are equivalent to Wiener measure”, Séminaire de Probabilités XXXVII, Lecture Notes in Math., 1832, Springer, Berlin, 2003, 81–89 | DOI | MR | Zbl
[10] P. Chigansky, M. Kleptsyna, “Exact asymptotics in eigenproblems for fractional Brownian covariance operators”, Stochastic Process. Appl., 128:6 (2018), 2007–2059 | DOI | MR
[11] M. Dozzi, Y. Mishura, G. Shevchenko, “Asymptotic behavior of mixed power variations and statistical estimation in mixed models”, Stat. Inference Stoch. Process., 18:2 (2015), 151–175 | DOI | MR | Zbl
[12] P. Embrechts, M. Maejima, Selfsimilar processes, Princeton Ser. Appl. Math., Princeton Univ. Press, Princeton, NJ, 2002, xii+111 pp. | MR | Zbl
[13] I. C. Gohberg, M. G. Krein, Theory and applications of Volterra operators in Hilbert space, Transl. Math. Monogr., 24, Amer. Math. Soc., Providence, RI, 1970, x+430 pp. | MR | MR | Zbl | Zbl
[14] T. Hida, M. Hitsuda, Gaussian processes, Transl. from the Japan., Transl. Math. Monogr., 120, Amer. Math. Soc., Providence, RI, 1993, xvi+183 pp. | MR | Zbl
[15] Yaozhong Hu, D. Nualart, “Parameter estimation for fractional Ornstein–Uhlenbeck processes”, Statist. Probab. Lett., 80:11-12 (2010), 1030–1038 | DOI | MR | Zbl
[16] C. Jost, “Transformation formulas for fractional Brownian motion”, Stochastic Process. Appl., 116:10 (2006), 1341–1357 | DOI | MR | Zbl
[17] M. L. Kleptsyna, A. Le Breton, “Optimal linear filtering of general multidimensional Gaussian processes and its application to Laplace transforms of quadratic functionals”, J. Appl. Math. Stochastic Anal., 14:3 (2001), 215–226 | DOI | MR | Zbl
[18] M. L. Kleptsyna, A. Le Breton, “Statistical analysis of the fractional Ornstein–Uhlenbeck type process”, Stat. Inference Stoch. Process., 5:3 (2002), 229–248 | DOI | MR | Zbl
[19] Y. A. Kutoyants, Statistical inference for ergodic diffusion processes, Springer Ser. Statist., Springer-Verlag, London, 2004, xiv+481 pp. | DOI | MR | Zbl
[20] A. Le Breton, “Filtering and parameter estimation in a simple linear system driven by a fractional Brownian motion”, Statist. Probab. Lett., 38:3 (1998), 263–274 | DOI | MR | Zbl
[21] R. S. Liptser, A. N. Shiryaev, Statistics of random processes, v. I, Appl. Math. (N. Y.), 5, General theory, 2nd rev. and exp. ed., Springer-Verlag, Berlin, 2001, xvi+427 pp. | MR | MR | Zbl | Zbl
[22] Y. S. Mishura, Stochastic calculus for fractional Brownian motion and related processes, Lecture Notes in Math., 1929, Springer-Verlag, Berlin, 2008, xviii+393 pp. | DOI | MR | Zbl
[23] I. Norros, E. Valkeila, J. Virtamo, “An elementary approach to a Girsanov formula and other analytical results on fractional Brownian motions”, Bernoulli, 5:4 (1999), 571–587 | DOI | MR | Zbl
[24] V. Pipiras, M. S. Taqqu, Long-range dependence and self-similarity, Camb. Ser. Stat. Probab. Math., 45, Cambridge Univ. Press, Cambridge, 2017, xxiii+668 pp. | DOI | MR | Zbl
[25] T. Sottinen, L. Viitasaari, “Parameter estimation for the Langevin equation with stationary-increment Gaussian noise”, Stat. Inference Stoch. Process. (to appear) | DOI
[26] G. Vainikko, A. Pedas, “The properties of solutions of weakly singular integral equations”, J. Austral. Math. Soc. Ser. B, 22:4 (1980/81), 419–430 | DOI | MR | Zbl
[27] H. van Zanten, “When is a linear combination of independent fBm's equivalent to a single fBm?”, Stochastic Process. Appl., 117:1 (2007), 57–70 | DOI | MR | Zbl