$K$-differenced vector random fields
Teoriâ veroâtnostej i ee primeneniâ, Tome 63 (2018) no. 3, pp. 482-499 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A thin-tailed vector random field, referred to as a $K$-differenced vector random field, is introduced. Its finite-dimensional densities are the differences of two Bessel functions of second order, whenever they exist, and its finite-dimensional characteristic functions have simple closed forms as the differences of two power functions or logarithm functions. Its finite-dimensional distributions have thin tails, even thinner than those of a Gaussian one, and it reduces to a Linnik or Laplace vector random field in a limiting case. As one of its most valuable properties, a $K$-differenced vector random field is characterized by its mean and covariance matrix functions just like a Gaussian one. Some covariance matrix structures are constructed in this paper for not only the $K$-differenced vector random field, but also for other second-order elliptically contoured vector random fields. Properties of the multivariate $K$-differenced distribution are also studied.
Keywords: covariance matrix function, cross covariance, direct covariance, elliptically contoured random field, Gaussian random field, $K$-differenced distribution, spherically invariant random field, stationary, variogram.
@article{TVP_2018_63_3_a4,
     author = {R. Alsultan and Ch. Ma},
     title = {$K$-differenced vector random fields},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {482--499},
     year = {2018},
     volume = {63},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2018_63_3_a4/}
}
TY  - JOUR
AU  - R. Alsultan
AU  - Ch. Ma
TI  - $K$-differenced vector random fields
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2018
SP  - 482
EP  - 499
VL  - 63
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TVP_2018_63_3_a4/
LA  - en
ID  - TVP_2018_63_3_a4
ER  - 
%0 Journal Article
%A R. Alsultan
%A Ch. Ma
%T $K$-differenced vector random fields
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2018
%P 482-499
%V 63
%N 3
%U http://geodesic.mathdoc.fr/item/TVP_2018_63_3_a4/
%G en
%F TVP_2018_63_3_a4
R. Alsultan; Ch. Ma. $K$-differenced vector random fields. Teoriâ veroâtnostej i ee primeneniâ, Tome 63 (2018) no. 3, pp. 482-499. http://geodesic.mathdoc.fr/item/TVP_2018_63_3_a4/

[1] D. N. Anderson, “A multivariate Linnik distribution”, Statist. Probab. Lett., 14:4 (1992), 333–336 | DOI | MR | Zbl

[2] G. Bakeerathan, N. N. Leonenko, “Linnik processes”, Random Oper. Stoch. Equ., 16:2 (2008), 109–130 | DOI | MR | Zbl

[3] N. Balakrishnan, Chunsheng Ma, Renxiang Wang, “Logistic vector random fields with logistic direct and cross covariances”, J. Statist. Plann. Inference, 161 (2015), 109–118 | DOI | MR | Zbl

[4] R. B. Bapat, T. E. S. Raghavan, Nonnegative matrices and applications, Encyclopedia Math. Appl., 64, Cambridge Univ. Press, Cambridge, 1997, xiv+336 pp. | DOI | MR | Zbl

[5] A. Erdélyi, W. Magnus, F. Oberhettinger, F. G. Tricomi, Tables of integral transforms, Based, in part, on notes left by H. Bateman, v. I, McGraw-Hill Book Company, Inc., New York–Toronto–London, 1954, xx+391 pp. | MR | MR | Zbl | Zbl

[6] E. Biglieri, Kung Yao, Cheng-An Yang, “Fading models from spherically invariant processes”, IEEE Trans. Wireless Commun., 14:10 (2015), 5526–5538 | DOI

[7] J.-P. Chilès, P. Delfiner, Geostatistics. Modeling spatial uncertainty, Wiley Ser. Probab. Statist. Appl. Probab. Statist., John Wiley Sons, Inc., New York, 1999, xii+695 pp. | DOI | MR | Zbl

[8] S. Cohen, J. Istas, Fractional fields and applications, Math. Appl. (Berlin), 73, Springer, Heidelberg, 2013, xii+270 pp. | DOI | MR | Zbl

[9] H. Cramér, M. R. Leadbetter, Stationary and related stochastic processes. Sample function properties and their applications, John Wiley Sons, Inc., New York–London–Sydney, 1967, xii+348 pp. | MR | Zbl | Zbl

[10] N. A. C. Cressie, Statistics for spatial data, Wiley Ser. Probab. Math. Statist. Appl. Probab. Statist., rev. ed., John Wiley Sons, Inc., New York, 1993, xxii+900 pp. | DOI | MR | Zbl

[11] Juan Du, N. Leonenko, Chunsheng Ma, Hong Shu, “Hyperbolic vector random fields with hyperbolic direct and cross covariance functions”, Stoch. Anal. Appl., 30:4 (2012), 662–674 | DOI | MR | Zbl

[12] Juan Du, Chunsheng Ma, “Spherically invariant vector random fields in space and time”, IEEE Trans. Signal Process., 59:12 (2011), 5921–5929 | DOI | MR

[13] T. Eltoft, T. Kim, Te-Won Lee, “On the multivariate Laplace distribution”, IEEE Signal Proc. Lett., 13:5 (2006), 300–303 | DOI

[14] I. I. Gikhman, A. V. Skorokhod, Introduction to the theory of random processes, W. B. Saunders Co., Philadelphia, Pa.–London–Toronto, Ont., 1969, xiii+516 pp. | MR | MR | Zbl

[15] I. S. Gradshteyn, I. M. Ryzhik, Table of integrals, series, and products, 7th ed., Elsevier/Academic Press, Amsterdam, 2007, xlviii+1171 pp. | MR | MR | Zbl | Zbl

[16] S. T. Huang, S. Cambanis, “Spherically invariant processes: their nonlinear structure, discrimination, and estimation”, J. Multivariate Anal., 9:1 (1979), 59–83 | DOI | MR | Zbl

[17] I. A. Ibragimov, Y. A. Rozanov, Gaussian random processes, Appl. Math. (N. Y.), 9, Springer-Verlag, New York–Berlin, 1978, x+275 pp. | MR | MR | Zbl | Zbl

[18] M. A. Lifshits, Gaussian random functions, Math. Appl., 322, Kluwer Acad. Publ., Dordrecht, 1995, xii+333 pp. | DOI | MR | Zbl | Zbl

[19] S. C. Lim, L. P. Teo, “Analytic and asymptotic properties of multivariate generalized Linnik's probability densities”, J. Fourier Anal. Appl., 16:5 (2010), 715–747 | DOI | MR | Zbl

[20] Chunsheng Ma, “Construction of non-Gaussian random fields with any given correlation structure”, J. Statist. Plann. Inference, 139:3 (2009), 780–787 | DOI | MR | Zbl

[21] Chunsheng Ma, “Vector random fields with second-order moments or second-order increments”, Stoch. Anal. Appl., 29:2 (2011), 197–215 | DOI | MR | Zbl

[22] Chunsheng Ma, “Covariance matrices for second-order vector random fields in space and time”, IEEE Trans. Signal Process., 59:5 (2011), 2160–2168 | DOI | MR

[23] Chunsheng Ma, “Vector random fields with long-range dependence”, Fractals, 19:2 (2011), 249–258 | DOI | MR | Zbl

[24] Chunsheng Ma, “Student's $t$ vector random fields with power-law and log-law decaying direct and cross covariances”, Stoch. Anal. Appl., 31:1 (2013), 167–182 | DOI | MR | Zbl

[25] A. Malyarenko, Invariant random fields on spaces with a group action, Probab. Appl. (N. Y.), Springer, Heidelberg, 2013, xviii+261 pp. | DOI | MR | Zbl

[26] S. Primak, V. Kontorovich, V. Lyandres, Stochastic methods and their applications to communications. Stochastic differential equations approach, John Wiley Sons, Inc., Hoboken, NJ, 2004, xii+434 pp. | DOI | MR | Zbl

[27] J. Røislien, H. Omre, “$T$-distributed random fields: a parametric model for heavy-tailed well-log data”, Math. Geology, 38 (2006), 821–849 | DOI

[28] W. R. Schneider, “Completely monotone generalized Mittag-Leffler functions”, Exposition. Math., 14:1 (1996), 3–16 | MR | Zbl

[29] A. M. Vershik, “Some characteristic properties of stochastic Gaussian processes”, Theory Probab. Appl., 9:2 (1964), 353–356 | DOI | MR | Zbl

[30] G. N. Watson, A treatise on the theory of Bessel functions, 2nd ed., Cambridge Univ. Press, Cambridge, England; The Macmillan Co., New York, 1944, vi+804 pp. | MR | Zbl

[31] D. V. Widder, The Laplace transform, Princeton Math. Ser., 6, Princeton Univ. Press, Princeton, NJ, 1941, x+406 pp. | MR | Zbl

[32] G. L. Wise, N. C. Gallagher, Jr., “On spherically invariant random processes”, IEEE Trans. Information Theory, IT-24:1 (1978), 118–120 | DOI | MR | Zbl

[33] A. M. Yaglom, Correlation theory of stationary and related random functions, v. 1, 2, Springer Ser. Statist., Springer-Verlag, New York, 1987, xiv+526 pp., x+258 pp. | MR | MR | Zbl

[34] Kung Yao, “A representation theorem and its applications to spherically-invariant random processes”, IEEE Trans. Information Theory, IT-19 (1973), 600–608 | DOI | MR | Zbl

[35] Kung Yao, “Spherically invariant random processes: theory and applications”, Communications, information and network security, Springer, New York, 2003, 315–331 | DOI | Zbl

[36] Kung Yao, F. Lorenzelli, Chiao-En Chen, Detection and estimation for communication and radar systems, Cambridge Univ. Press, Cambridge, 2013, 321 pp.