$K$-differenced vector random fields
Teoriâ veroâtnostej i ee primeneniâ, Tome 63 (2018) no. 3, pp. 482-499

Voir la notice de l'article provenant de la source Math-Net.Ru

A thin-tailed vector random field, referred to as a $K$-differenced vector random field, is introduced. Its finite-dimensional densities are the differences of two Bessel functions of second order, whenever they exist, and its finite-dimensional characteristic functions have simple closed forms as the differences of two power functions or logarithm functions. Its finite-dimensional distributions have thin tails, even thinner than those of a Gaussian one, and it reduces to a Linnik or Laplace vector random field in a limiting case. As one of its most valuable properties, a $K$-differenced vector random field is characterized by its mean and covariance matrix functions just like a Gaussian one. Some covariance matrix structures are constructed in this paper for not only the $K$-differenced vector random field, but also for other second-order elliptically contoured vector random fields. Properties of the multivariate $K$-differenced distribution are also studied.
Keywords: covariance matrix function, cross covariance, direct covariance, elliptically contoured random field, Gaussian random field, $K$-differenced distribution, spherically invariant random field, stationary, variogram.
@article{TVP_2018_63_3_a4,
     author = {R. Alsultan and Ch. Ma},
     title = {$K$-differenced vector random fields},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {482--499},
     publisher = {mathdoc},
     volume = {63},
     number = {3},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2018_63_3_a4/}
}
TY  - JOUR
AU  - R. Alsultan
AU  - Ch. Ma
TI  - $K$-differenced vector random fields
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2018
SP  - 482
EP  - 499
VL  - 63
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2018_63_3_a4/
LA  - en
ID  - TVP_2018_63_3_a4
ER  - 
%0 Journal Article
%A R. Alsultan
%A Ch. Ma
%T $K$-differenced vector random fields
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2018
%P 482-499
%V 63
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2018_63_3_a4/
%G en
%F TVP_2018_63_3_a4
R. Alsultan; Ch. Ma. $K$-differenced vector random fields. Teoriâ veroâtnostej i ee primeneniâ, Tome 63 (2018) no. 3, pp. 482-499. http://geodesic.mathdoc.fr/item/TVP_2018_63_3_a4/