On the exact asymptotics of small deviations of $L_2$-norm for some Gaussian random fields
Teoriâ veroâtnostej i ee primeneniâ, Tome 63 (2018) no. 3, pp. 468-481

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we study the asymptotic behavior of the tail probability $\mathbf P(V^2$ as $r\to 0$, where the sum $V^2$ is given by the formula $V^2=a^2 \sum_{i,j\ge 1} (i+\beta)^{-2c}(j+\delta)^{-2}\xi^2_{ij}$. Here $\{\xi_{ij}\}$ are independent standard Gaussian random variables, and $a>0$, $\beta >-1$, $\delta>-1$, $c>1/2$$\ne 1$ are some constants. Thus, we study small deviations of the $L_2$-norm of certain two-parameter Gaussian random fields, that have the structure of a tensor product.
Keywords: small deviations, Karhunen–Loève expansion, Gaussian random field, tensor product
Mots-clés : $L_2$-norm.
@article{TVP_2018_63_3_a3,
     author = {L. V. Rozovskii},
     title = {On the exact asymptotics of small deviations of $L_2$-norm for some {Gaussian} random fields},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {468--481},
     publisher = {mathdoc},
     volume = {63},
     number = {3},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2018_63_3_a3/}
}
TY  - JOUR
AU  - L. V. Rozovskii
TI  - On the exact asymptotics of small deviations of $L_2$-norm for some Gaussian random fields
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2018
SP  - 468
EP  - 481
VL  - 63
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2018_63_3_a3/
LA  - ru
ID  - TVP_2018_63_3_a3
ER  - 
%0 Journal Article
%A L. V. Rozovskii
%T On the exact asymptotics of small deviations of $L_2$-norm for some Gaussian random fields
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2018
%P 468-481
%V 63
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2018_63_3_a3/
%G ru
%F TVP_2018_63_3_a3
L. V. Rozovskii. On the exact asymptotics of small deviations of $L_2$-norm for some Gaussian random fields. Teoriâ veroâtnostej i ee primeneniâ, Tome 63 (2018) no. 3, pp. 468-481. http://geodesic.mathdoc.fr/item/TVP_2018_63_3_a3/