On the exact asymptotics of small deviations of $L_2$-norm for some Gaussian random fields
Teoriâ veroâtnostej i ee primeneniâ, Tome 63 (2018) no. 3, pp. 468-481 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we study the asymptotic behavior of the tail probability $\mathbf P(V^2 as $r\to 0$, where the sum $V^2$ is given by the formula $V^2=a^2 \sum_{i,j\ge 1} (i+\beta)^{-2c}(j+\delta)^{-2}\xi^2_{ij}$. Here $\{\xi_{ij}\}$ are independent standard Gaussian random variables, and $a>0$, $\beta >-1$, $\delta>-1$, $c>1/2$, $\ne 1$ are some constants. Thus, we study small deviations of the $L_2$-norm of certain two-parameter Gaussian random fields, that have the structure of a tensor product.
Keywords: small deviations, Karhunen–Loève expansion, Gaussian random field, tensor product
Mots-clés : $L_2$-norm.
@article{TVP_2018_63_3_a3,
     author = {L. V. Rozovskii},
     title = {On the exact asymptotics of small deviations of $L_2$-norm for some {Gaussian} random fields},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {468--481},
     year = {2018},
     volume = {63},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2018_63_3_a3/}
}
TY  - JOUR
AU  - L. V. Rozovskii
TI  - On the exact asymptotics of small deviations of $L_2$-norm for some Gaussian random fields
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2018
SP  - 468
EP  - 481
VL  - 63
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TVP_2018_63_3_a3/
LA  - ru
ID  - TVP_2018_63_3_a3
ER  - 
%0 Journal Article
%A L. V. Rozovskii
%T On the exact asymptotics of small deviations of $L_2$-norm for some Gaussian random fields
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2018
%P 468-481
%V 63
%N 3
%U http://geodesic.mathdoc.fr/item/TVP_2018_63_3_a3/
%G ru
%F TVP_2018_63_3_a3
L. V. Rozovskii. On the exact asymptotics of small deviations of $L_2$-norm for some Gaussian random fields. Teoriâ veroâtnostej i ee primeneniâ, Tome 63 (2018) no. 3, pp. 468-481. http://geodesic.mathdoc.fr/item/TVP_2018_63_3_a3/

[1] I. S. Gradshteyn, I. M. Ryzhik, “Table of integrals, series, and products”, 5th ed., Academic Press, Inc., Boston, MA, 1994, xlviii+1204 pp. | MR | MR | Zbl | Zbl

[2] E. Csáki, “On small values of the square integral of a multiparameter Wiener process”, Statistics and probability (Visegrád, 1982), Reidel, Dordrecht, 1984, 19–26 | MR | Zbl

[3] J. A. Fill, F. Torcaso, “Asymptotic analysis via Mellin transforms for small deviations in $L^2$-norm of integrated Brownian sheets”, Probab. Theory Related Fields, 130:2 (2004), 259–288 | DOI | MR | Zbl

[4] A. Karol', A. Nazarov, Ya. Nikitin, “Small ball probabilities for Gaussian random fields and tensor products of compact operators”, Trans. Amer. Math. Soc., 360:3 (2008), 1443–1474 | DOI | MR | Zbl

[5] A. I. Karol', A. I. Nazarov, “Small ball probabilities for smooth Gaussian fields and tensor products of compact operators”, Math. Nachr., 287:5-6 (2014), 595–609 | DOI | MR | Zbl

[6] W. V. Li, “Comparison results for the lower tail of Gaussian seminorms”, J. Theoret. Probab., 5:1 (1992), 1–31 | DOI | MR | Zbl

[7] M. A. Lifshits, B. S. Tsirel'son, “Small deviations of Gaussian fields”, in “Summary of reports presented at sessions of the seminar on probability theory and mathematical statistics at the Leningrad branch of the V. A. Steklov Mathematical Institute of the Academy of Sciences of the USSR (February–December 1985)”, Theory Probab. Appl., 31:3 (1987), 557–558 | DOI

[8] A. I. Nazarov, Ya. Yu. Nikitin, “Logarithmic $L_2$-small ball asymptotics for some fractional Gaussian processes”, Theory Probab. Appl., 49:4 (2005), 645–658 | DOI | DOI | MR | Zbl

[9] V. V. Petrov, Sums of independent random variables, Ergeb. Math. Grenzgeb., 82, Springer-Verlag, New York–Heidelberg, 1975, x+346 pp. | MR | MR | Zbl | Zbl

[10] L. V. Rozovsky, “On Gaussian measure of balls in a Hilbert space”, Theory Probab. Appl., 53:2 (2009), 357–364 | DOI | DOI | Zbl

[11] L. V. Rozovsky, “Small ball probabilities for certain Gaussian random fields”, J. Theor. Probab., publ. online 2017, 1–16 (to appear) | DOI

[12] N. V. Rastegaev, On spectral asymptotics of the tensor product of operators with almost regular marginal asymptotics, 2018, arXiv: 1804.00187

[13] G. N. Sytaya, “Ob asimptoticheskom predstavlenii gaussovoi mery v gilbertovom prostranstve”, Teoriya stokhasticheskikh protsessov, 2 (1974), 94–104

[14] M. A. Lifshits, “On the lower tail probabilities of some random series”, Ann. Probab., 25:1 (1997), 424–442 | DOI | MR | Zbl