Robust sign test for the unit root hypothesis of autoregression
Teoriâ veroâtnostej i ee primeneniâ, Tome 63 (2018) no. 3, pp. 431-446

Voir la notice de l'article provenant de la source Math-Net.Ru

An $\operatorname{AR}(1)$-model is considered with autoregression observations that contain gross errors (contaminations) with unknown arbitrary distribution. The unit root hypothesis for autoregression is tested. A special sign test is proposed as an alternative to the least-square test (the latter test is not applicable in this setting). The sign test is shown to be locally qualitatively robust in terms of the equicontinuity of the power.
Keywords: hypotheses testing, unit root, sign tests, qualitative robustness.
Mots-clés : autoregression, contaminations
@article{TVP_2018_63_3_a1,
     author = {M. V. Boldin},
     title = {Robust sign test for the unit root hypothesis of autoregression},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {431--446},
     publisher = {mathdoc},
     volume = {63},
     number = {3},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2018_63_3_a1/}
}
TY  - JOUR
AU  - M. V. Boldin
TI  - Robust sign test for the unit root hypothesis of autoregression
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2018
SP  - 431
EP  - 446
VL  - 63
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2018_63_3_a1/
LA  - ru
ID  - TVP_2018_63_3_a1
ER  - 
%0 Journal Article
%A M. V. Boldin
%T Robust sign test for the unit root hypothesis of autoregression
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2018
%P 431-446
%V 63
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2018_63_3_a1/
%G ru
%F TVP_2018_63_3_a1
M. V. Boldin. Robust sign test for the unit root hypothesis of autoregression. Teoriâ veroâtnostej i ee primeneniâ, Tome 63 (2018) no. 3, pp. 431-446. http://geodesic.mathdoc.fr/item/TVP_2018_63_3_a1/