Robust sign test for the unit root hypothesis of autoregression
Teoriâ veroâtnostej i ee primeneniâ, Tome 63 (2018) no. 3, pp. 431-446
Voir la notice de l'article provenant de la source Math-Net.Ru
An $\operatorname{AR}(1)$-model is considered with autoregression observations that contain gross errors (contaminations)
with unknown arbitrary distribution. The unit root hypothesis for autoregression is tested.
A special sign test is proposed as an alternative to the least-square test (the latter test is not applicable in this setting).
The sign test is shown to be locally qualitatively robust in terms of the equicontinuity of the power.
Keywords:
hypotheses testing, unit root, sign tests, qualitative robustness.
Mots-clés : autoregression, contaminations
Mots-clés : autoregression, contaminations
@article{TVP_2018_63_3_a1,
author = {M. V. Boldin},
title = {Robust sign test for the unit root hypothesis of autoregression},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {431--446},
publisher = {mathdoc},
volume = {63},
number = {3},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2018_63_3_a1/}
}
M. V. Boldin. Robust sign test for the unit root hypothesis of autoregression. Teoriâ veroâtnostej i ee primeneniâ, Tome 63 (2018) no. 3, pp. 431-446. http://geodesic.mathdoc.fr/item/TVP_2018_63_3_a1/