Two-boundary problem for a random walk in a random environment
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 63 (2018) no. 3, pp. 417-430
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Given a sequence of independent identically distributed pairs of random variables $(p_i,q_i)$, $i\in\mathbf{Z}$, with
$p_0+q_0=1$, and $p_0>0$ a.s., $q_0>0$ a.s., one considers a random walk in the random environment $(p_i,q_i)$, $i\in\mathbf{Z}$.
This means that, for a fixed random environment, a walking particle transits from the state $i$ either to the state $(i+1)$
with probability $p_i$ or to the state $(i-1)$ with probability $q_i$. It is assumed that $\mathbf{E}\ln (p_0/q_0)=0$,
that is, the walk is oscillating. We are concerned with the exit problem of the walk under consideration from the interval
$(-\lfloor an\rfloor,\lfloor bn\rfloor)$, where $a$, $b$ are arbitrary positive constants.
We find the asymptotics of the exit probability of the walk from the above interval from the right (the left).
A limit theorem for the exit time of the walk from this interval is obtained.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
random walk in random environment, branching process in random environment with immigration, limit theorem.
                    
                  
                
                
                @article{TVP_2018_63_3_a0,
     author = {V. I. Afanasyev},
     title = {Two-boundary problem for a random walk in a random environment},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {417--430},
     publisher = {mathdoc},
     volume = {63},
     number = {3},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2018_63_3_a0/}
}
                      
                      
                    V. I. Afanasyev. Two-boundary problem for a random walk in a random environment. Teoriâ veroâtnostej i ee primeneniâ, Tome 63 (2018) no. 3, pp. 417-430. http://geodesic.mathdoc.fr/item/TVP_2018_63_3_a0/
