Two-boundary problem for a random walk in a random environment
Teoriâ veroâtnostej i ee primeneniâ, Tome 63 (2018) no. 3, pp. 417-430

Voir la notice de l'article provenant de la source Math-Net.Ru

Given a sequence of independent identically distributed pairs of random variables $(p_i,q_i)$, $i\in\mathbf{Z}$, with $p_0+q_0=1$, and $p_0>0$ a.s., $q_0>0$ a.s., one considers a random walk in the random environment $(p_i,q_i)$, $i\in\mathbf{Z}$. This means that, for a fixed random environment, a walking particle transits from the state $i$ either to the state $(i+1)$ with probability $p_i$ or to the state $(i-1)$ with probability $q_i$. It is assumed that $\mathbf{E}\ln (p_0/q_0)=0$, that is, the walk is oscillating. We are concerned with the exit problem of the walk under consideration from the interval $(-\lfloor an\rfloor,\lfloor bn\rfloor)$, where $a$$b$ are arbitrary positive constants. We find the asymptotics of the exit probability of the walk from the above interval from the right (the left). A limit theorem for the exit time of the walk from this interval is obtained.
Keywords: random walk in random environment, branching process in random environment with immigration, limit theorem.
@article{TVP_2018_63_3_a0,
     author = {V. I. Afanasyev},
     title = {Two-boundary problem for a random walk in a random environment},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {417--430},
     publisher = {mathdoc},
     volume = {63},
     number = {3},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2018_63_3_a0/}
}
TY  - JOUR
AU  - V. I. Afanasyev
TI  - Two-boundary problem for a random walk in a random environment
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2018
SP  - 417
EP  - 430
VL  - 63
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2018_63_3_a0/
LA  - ru
ID  - TVP_2018_63_3_a0
ER  - 
%0 Journal Article
%A V. I. Afanasyev
%T Two-boundary problem for a random walk in a random environment
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2018
%P 417-430
%V 63
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2018_63_3_a0/
%G ru
%F TVP_2018_63_3_a0
V. I. Afanasyev. Two-boundary problem for a random walk in a random environment. Teoriâ veroâtnostej i ee primeneniâ, Tome 63 (2018) no. 3, pp. 417-430. http://geodesic.mathdoc.fr/item/TVP_2018_63_3_a0/