@article{TVP_2018_63_3_a0,
author = {V. I. Afanasyev},
title = {Two-boundary problem for a random walk in a random environment},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {417--430},
year = {2018},
volume = {63},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2018_63_3_a0/}
}
V. I. Afanasyev. Two-boundary problem for a random walk in a random environment. Teoriâ veroâtnostej i ee primeneniâ, Tome 63 (2018) no. 3, pp. 417-430. http://geodesic.mathdoc.fr/item/TVP_2018_63_3_a0/
[1] F. Solomon, “Random walks in a random environment”, Ann. Probab., 3:1 (1975), 1–31 | DOI | MR | Zbl
[2] Ya. G. Sinai, “The limiting behavior of a one-dimensional random walk in a random medium”, Theory Probab. Appl., 27:2 (1983), 256–268 | DOI | MR | Zbl
[3] G. A. Ritter, Random walk in a random environment, critical case, Thesis (Ph.D.), Cornell Univ., Cornell, USA, 1976, 78 pp. | MR
[4] V. I. Afanasyev, “About time of reaching a high level by a random walk in a random environment”, Theory Probab. Appl., 57:4 (2013), 547–567 | DOI | DOI | MR | Zbl
[5] V. I. Afanasyev, “Conditional limit theorem for the maximum of a random walk in random environment”, Theory Probab. Appl., 58:4 (2014), 525–545 | DOI | DOI | MR | Zbl
[6] H. Kesten, M. V. Kozlov, F. Spitzer, “A limit law for random walk in a random environment”, Compositio Math., 30:2 (1975), 145–168 | MR | Zbl
[7] V. I. Afanasyev, “On the time of reaching a high level by a transient random walk in a random environment”, Theory Probab. Appl., 61:2 (2017), 178–207 | DOI | DOI | MR | Zbl
[8] V. I. Afanasyev, “On the non-recurrent random walk in a random environment”, Discrete Math. Appl., 28:3 (2018), 139–156 | DOI | DOI | MR
[9] V. S. Korolyuk, N. I. Portenko, A. V. Skorokhod, A. F. Turbin, Aide-mémoire de théorie des probabilités et de statistique mathématique, Mir, Moscow, 1983, 581 pp. | MR | MR | Zbl | Zbl