Two-boundary problem for a random walk in a random environment
Teoriâ veroâtnostej i ee primeneniâ, Tome 63 (2018) no. 3, pp. 417-430 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Given a sequence of independent identically distributed pairs of random variables $(p_i,q_i)$, $i\in\mathbf{Z}$, with $p_0+q_0=1$, and $p_0>0$ a.s., $q_0>0$ a.s., one considers a random walk in the random environment $(p_i,q_i)$, $i\in\mathbf{Z}$. This means that, for a fixed random environment, a walking particle transits from the state $i$ either to the state $(i+1)$ with probability $p_i$ or to the state $(i-1)$ with probability $q_i$. It is assumed that $\mathbf{E}\ln (p_0/q_0)=0$, that is, the walk is oscillating. We are concerned with the exit problem of the walk under consideration from the interval $(-\lfloor an\rfloor,\lfloor bn\rfloor)$, where $a$, $b$ are arbitrary positive constants. We find the asymptotics of the exit probability of the walk from the above interval from the right (the left). A limit theorem for the exit time of the walk from this interval is obtained.
Keywords: random walk in random environment, branching process in random environment with immigration, limit theorem.
@article{TVP_2018_63_3_a0,
     author = {V. I. Afanasyev},
     title = {Two-boundary problem for a random walk in a random environment},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {417--430},
     year = {2018},
     volume = {63},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2018_63_3_a0/}
}
TY  - JOUR
AU  - V. I. Afanasyev
TI  - Two-boundary problem for a random walk in a random environment
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2018
SP  - 417
EP  - 430
VL  - 63
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TVP_2018_63_3_a0/
LA  - ru
ID  - TVP_2018_63_3_a0
ER  - 
%0 Journal Article
%A V. I. Afanasyev
%T Two-boundary problem for a random walk in a random environment
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2018
%P 417-430
%V 63
%N 3
%U http://geodesic.mathdoc.fr/item/TVP_2018_63_3_a0/
%G ru
%F TVP_2018_63_3_a0
V. I. Afanasyev. Two-boundary problem for a random walk in a random environment. Teoriâ veroâtnostej i ee primeneniâ, Tome 63 (2018) no. 3, pp. 417-430. http://geodesic.mathdoc.fr/item/TVP_2018_63_3_a0/

[1] F. Solomon, “Random walks in a random environment”, Ann. Probab., 3:1 (1975), 1–31 | DOI | MR | Zbl

[2] Ya. G. Sinai, “The limiting behavior of a one-dimensional random walk in a random medium”, Theory Probab. Appl., 27:2 (1983), 256–268 | DOI | MR | Zbl

[3] G. A. Ritter, Random walk in a random environment, critical case, Thesis (Ph.D.), Cornell Univ., Cornell, USA, 1976, 78 pp. | MR

[4] V. I. Afanasyev, “About time of reaching a high level by a random walk in a random environment”, Theory Probab. Appl., 57:4 (2013), 547–567 | DOI | DOI | MR | Zbl

[5] V. I. Afanasyev, “Conditional limit theorem for the maximum of a random walk in random environment”, Theory Probab. Appl., 58:4 (2014), 525–545 | DOI | DOI | MR | Zbl

[6] H. Kesten, M. V. Kozlov, F. Spitzer, “A limit law for random walk in a random environment”, Compositio Math., 30:2 (1975), 145–168 | MR | Zbl

[7] V. I. Afanasyev, “On the time of reaching a high level by a transient random walk in a random environment”, Theory Probab. Appl., 61:2 (2017), 178–207 | DOI | DOI | MR | Zbl

[8] V. I. Afanasyev, “On the non-recurrent random walk in a random environment”, Discrete Math. Appl., 28:3 (2018), 139–156 | DOI | DOI | MR

[9] V. S. Korolyuk, N. I. Portenko, A. V. Skorokhod, A. F. Turbin, Aide-mémoire de théorie des probabilités et de statistique mathématique, Mir, Moscow, 1983, 581 pp. | MR | MR | Zbl | Zbl