A discrimination test for tails of Weibull-type distributions
Teoriâ veroâtnostej i ee primeneniâ, Tome 63 (2018) no. 2, pp. 402-413 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We propose a consistent test for discrimination between a simple hypothesis and a left-sided alternative about the tails of Weibull-type distributions. The test is constructed using just $k$ higher-order statistics of the sample.
Keywords: discrimination test, order statistics, Weibull-type distributions.
Mots-clés : tail distributions
@article{TVP_2018_63_2_a8,
     author = {I. V. Rodionov},
     title = {A discrimination test for tails of {Weibull-type} distributions},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {402--413},
     year = {2018},
     volume = {63},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2018_63_2_a8/}
}
TY  - JOUR
AU  - I. V. Rodionov
TI  - A discrimination test for tails of Weibull-type distributions
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2018
SP  - 402
EP  - 413
VL  - 63
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_2018_63_2_a8/
LA  - ru
ID  - TVP_2018_63_2_a8
ER  - 
%0 Journal Article
%A I. V. Rodionov
%T A discrimination test for tails of Weibull-type distributions
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2018
%P 402-413
%V 63
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_2018_63_2_a8/
%G ru
%F TVP_2018_63_2_a8
I. V. Rodionov. A discrimination test for tails of Weibull-type distributions. Teoriâ veroâtnostej i ee primeneniâ, Tome 63 (2018) no. 2, pp. 402-413. http://geodesic.mathdoc.fr/item/TVP_2018_63_2_a8/

[1] J. Beirlant, Yu. Goegebeur, J. Teugels, J. Segers, Statistics of extremes. Theory and applications, Wiley Ser. Probab. Stat., John Wiley Sons, Ltd., Chichester, 2004, xiv+490 pp. | DOI | MR | Zbl

[2] J. Beirlant, J. L. Teugels, “Asymptotics of Hill's estimator”, Teoriya veroyatn. i ee primen., 31:3 (1986), 530–536 | MR | Zbl

[3] M. Berred, “Record values and the estimation of the Weibull tail-coefficient”, C. R. Acad. Sci. Paris Sér. I Math., 312:12 (1991), 943–946 | MR | Zbl

[4] J. Diebolt, L. Gardes, S. Girard, A. Guillou, “Bias-reduced estimators of the Weibull tail-coefficient”, TEST, 17:2 (2008), 311–331 | DOI | MR | Zbl

[5] H. Drees, A. Ferreira, L. de Haan, “On maximum likelihood estimation of the extreme value index”, Ann. Appl. Probab., 14:3 (2004), 1179–1201 | DOI | MR | Zbl

[6] M. V. Fedoryuk, Metod perevala, Nauka, M., 1977, 368 pp. | MR | Zbl

[7] A. Ferreira, L. de Haan, Extreme value theory. An introduction, Springer Ser. Oper. Res. Financ. Eng., Springer, New York, 2006, xviii+417 pp. | DOI | MR | Zbl

[8] L. Gardes, S. Girard, A. Guillou, “Weibull tail-distributions revisited: a new look at some tail estimators”, J. Statist. Plann. Inference, 141:1 (2011), 429–444 | DOI | MR | Zbl

[9] B. Gnedenko, “Sur la distribution limite du terme maximum d'une série aléatoire”, Ann. of Math. (2), 44:3 (1943), 423–453 | DOI | MR | Zbl

[10] R. D. Gupta, D. Kundu, “Discriminating between Weibull and generalized exponential distributions”, Comput. Statist. Data Anal., 43:2 (2003), 179–196 | DOI | MR | Zbl

[11] R. D. Gupta, D. Kundu, A. Manglick, “Probability of correct selection of gamma versus GE or Weibull versus GE based on likelihood ratio statistic”, Recent advances in statistical methods (Montreal, QC, 2001), Imp. Coll. Press, London, 2002, 147–156 | DOI | MR | Zbl

[12] L. de Haan, “Equivalence classes of regularly varying functions”, Stochastic Processes Appl., 2:3 (1974), 243–259 | DOI | MR | Zbl

[13] P. Hall, “On some simple estimates of an exponent of regular variation”, J. Roy. Statist. Soc. Ser. B, 44:1 (1982), 37–42 | MR | Zbl

[14] B. M. Hill, “A simple general approach to inference about the tail of a distribution”, Ann. Statist., 3:5 (1975), 1163–1174 | DOI | MR | Zbl

[15] D. Kundu, M. Z. Raqab, “Discriminating between the generalized Rayleigh and log-normal distribution”, Statistics, 41:6 (2007), 505–515 | DOI | MR | Zbl

[16] M. J. Martins, Heavy tails estimation — variants to the Hill estimator, PhD thesis, Univ. of Lisbon, Portugal, 2000 (in Portuguese)

[17] A. E. Mikusheva, “Zakon bolshikh chisel i logarifmicheskii zakon v skheme serii”, Fundament. i prikl. matem., 6:1 (2000), 195–206 | MR | Zbl

[18] J. Pickands III, “Statistical inference using extreme order statistics”, Ann. Statist., 3 (1975), 119–131 | DOI | MR | Zbl

[19] S. Resnick, A probability path, Birkhäuser Boston, Inc., Boston, MA, 1999, xii+453 pp. | MR | Zbl

[20] I. Rodionov, Discrimination between close hypotheses about Weibull and log-Weibull type distributions by the higher order statistics, arXiv: 1606.08628